首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 教案在线 → 数学 → 九年级数学教案 |
|
||||||||||||||||||||
正弦和余弦 | ||||||||||||||||||||
收集整理:佚名 来源:本站整理 时间:2010-06-16 05:43:41 点击数:[] ![]() |
||||||||||||||||||||
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等. 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础. (2) 正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点. 3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当 这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号. 应当注意:单独写出三角函数的符号 4. 我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,
有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,
很显然,这些表达式提供给我们丰富的边与角间的数量关系. 5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.
利用勾股定理,很容易求出含有 根据定义,有 另一方面,可以想像,当
当
把以上结果可以集中列出下面的表:
6.教法建议: (1)联系实际,提出问题 通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边 (2) 动手度量、总结规律、给出定义以含 (3)加强数形结合思想的教学 “解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力. 第一课时 一、教学目标 1. 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实。 2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。 3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。 二、学法引导 1.教学方法:引导发现和探索研究相结合,尝试成功教法。 2.学生学法:在教师的指导下,积极思维,相互讨论,动手感知,探索新知。 三、重点、难点、疑点及解决办法 1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。 2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。 3.疑点:无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。 4.解决办法:教师引导学生比较、分析、讨论,解决重难点和疑点。 四、教具准备 自制投影片,一副三角板 五、教学步骤 (一)明确目标 1.如图,长5米的梯子架在高为3米的墙上,则 2.长5米的梯子以倾斜角 3.若长5米的梯子以倾斜角40°架在墙上,则 4.若长5米的梯子靠在墙上,使
前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来。 通过四个例子引出课题。 (二)整体感知 1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值。 学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。 2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗? 这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。 (三)教学过程 2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导: 若一组直角三角形有一个锐角相等,可以把其顶点 通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透。 而前面导课中动手实验的设计,实际上为突破难点而设计。这一设计同时起到培养学生思维能力的作用。 3.练习:教科书P3练习。此题为 (四)总结、扩展 1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。 教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。 2.扩展:当锐角为30°时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。 六、布置作业 本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。 七、板书设计
一、教学目标 1.使学生初步了解正弦、余弦概念;能够较正确地用 2.逐步培养学生观察、比较、分析、概括的思维能力. 3.渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点. 二、学法引导 1.教学方法:指导发现探索法. 2.学生学法:自主、合作、探究式学习. 三、重点、难点、疑点及解决方法 1.教学重点:使学生了解正弦、余弦概念. 2.教学难点:用含有几个字母的符号组 3.疑点:锐角的正弦、余弦值的范围. 4.解决办法:通过旧知创设情境,采用从特殊到一般的方法,引导学生进行探究式学习,从而解决重难点及疑点. 四、教具准备 三角板一副 五、教学步骤 (一)明确目标 1.引导学生回忆“直角三角形锐角固定时,它的对与斜边的比值、邻边与斜边的比值也是固定的.” 2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值—正弦和余弦. (二)整体感知 当直角三角形有一锐角为30°时,它的对边与斜边的比值为 而上节课我们发现,只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定,这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了. 通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象. (三)教学过程 正弦、余弦的要领是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点. 在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力,教师板书:在 若把 引导学生思考:当 教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“ 【例1】求出如下图所示的 解:(1)∵斜边 ∴ (2) ∴ 学生练习教材P6~7中1、2、3题. 让每个学生画含30°、45°的直角三角形,分别求 【例2】求下列各式的值: (1) 解:(1) (2) 这了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题: (1) (3) (5)若 (6)若 在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下, (四)总结、扩展 首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值,知道任意锐角A的正、余弦值都在0~1之间,即 还发现 六、布置作业 教材P10中2,3. 预习下一课内容. 补充:(1)若 (2)若 七、板书设计 |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
最新热点 | 最新推荐 | 相关新闻 | ||
|
|
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |