初三(上)第一学月考试数学试题(B) 一、选择题:(14×3分=42分 1、Rt△ABC中,∠C=900,AC=5,BC=12,则其外接圆半径为( ) A、5 B、12 C、13 D、6.5 2、一元二次方程x2-3x-1=0与x2-x +3=0所有实数根 之和为( ) A、2 B、—4 C、4 D、3 3、在Rt△ABC中,∠C=900,a、b、c为三边,则下列等式中不正确的是( ) A、a=csinA B、a=bcotB C、b=csinB D、c= 4、下列语句中,正确的有( )个 (1)三点确定一个圆.(2)平分弦的直径垂直于弦 (3)长度相等的弧是等弧.(4)相等的圆心角所对的弧相等 A、0个 B、1个 C、2个 D、3个 5、下列结论中正确的是( ) A、若α+β=900,则sinα= sinβ; B、sin(α+β)=sinα+sinβ C、cot 470- cot 430 >0 D、Rt△ABC中 ,∠C=900,则sinA+cosA>1,sin2A+sin2 B=1 6、过⊙O内一点M的最长弦为4cm,最短弦为2cm,则OM的长为( ) A、 B、 C、1 D、3 7、a、b、c是△ABC的三边长,则方程cx2+(a+b) x + =0 的根的情况是( ) A、没有实数根 B、有二个异号实根 C、有二个不相等的正实根 D、有二个不相等的负实根 8、已知⊙O的半径为6cm,一条弦AB=6cm,则弦AB所对的圆周角是( ) A、300 B、600 C、600或1200 D、300 或1500 9、关于x的方程x2 - 2(1- k)x +k2 = 0有实数根α、β,则α+β的取值范围是( ) A、α+β≥1 B、α+β≤—1 C、α+β≥ D、α+β≤ 10、设方程x2- x -1=0的二根为x1、x2 ,则x12、x22为二根的一元二次方程是( ) A、y2+3y+1=0 B、y2+3y-1=0 C、y2-3y-1=0 D、y2-3y +1=0 11、若x1≠x2,且x12-2x1-1=0,x22-2x2-1=0,则x1x2的值为( ) A、2 B、- 2 C、1 D、- 1 12、要使方程组 有一个实数解, 则m的值为( ) A、 B、±1 C、± D、±3 13、已知cosα=,则锐角α满足( ) A、00<α<300 ;B、300<α<450;C、450<α<600;D、600<α<900 14、如图,C是上半圆上一动点,作CD⊥AB,CP平分∠OCD交⊙O于下半圆P,则当C点在上半圆(不包括A、B二点)移动时,点P将( ) A、随C点的移动而移动;B、位置不变;C、到CD的距离不变;D、等分 二、填空题(4×3分=12分) 1、某人上坡走了60米,实际升高30米,则斜坡的坡度i=_______. 2、如图,一圆弧形桥拱,跨度AB=16m,拱高CD=4m,则桥拱的半径是______m. 3、在实数范围内分解因式:x2y-xy-y=____________________。 4、由一个二元一次方程和一个二元二次方程组成的方程组的解是 ,, 试写出一个符合以上要求的方程组: _______________. 三、解答题(1 —4题,每题5分,5—6 题,每题6分,7—8题,每题7分,总分46分) 1、(5分)如图:在△ABC中,已知∠A=α,AC=b,AB=c. (1)求证:S△ABC =bcsinA. (2)若∠A=600,b=4,c=6,求S△ABC和BC的长。
2、(5分)用换元法解分式方程:- 4x2 +7=0.
3.(5分)解方程组:
4、(5分)如图,AB=AC,AB是直径,求证:BC=2·DE.
5、(7分)如图,DB=DC,DF⊥AC.求证:①DA平分∠EAC;②FC=AB+AF.
6、(7分)矩形的一边长为5,对角线AC、BD交于O,若AO 、BO的长是方程 x2+2(m-1)x+m2+11=0的二根,求矩形的面积。
7、(7分)已知关于x的方程x2-2mx+n2=0,其中m、n是一个等腰△的腰和底边的长。 (1)求证:这个方程有二个不相等的实数根。 (2)若方程的二根x1、x2满足丨x1-x2丨=8,且等腰三角形的面积为4,求m、n的值。
8、(5分)如果一元二次方程ax2+bx+c=0的二根之比为2:3,试探索a、b、c之间的数量关系,并证明你的结论。
参考答案: DDDAD,ADCAD,DBDB. 二. 1:1; 10; y(x-)(x-); . 三. 1.(1)作BD⊥AC于D,则 sinA=, ∴ BD=c·sinA, ∵SΔABC=AC·BD ∴SΔABC =bcsinA. (2) SΔABC=bcsinA =×4×6×sin600 =6. 2.原方程变为 设=y,则原方程变为 -2y+1=0,即2y2-y-1=0. ∴ y=1 或y=-. 当y=1时,2x2-3=1,x=±2. 当y=-时,2x2-3=-,x=±. 经检验,原方程的根是 ±2, ±. 3.由(2)得 (2x+y)(x-3y)=0. ∴ y=2x 或x=3y. ∴原方程组化为 或 用代入法分别解这两个方程组, 得原方程组的解为 ,,,. 4.连结AD. ∵AB是直径, ∴∠ADB=900. ∵AB=AC, ∴BD=DC, ∠BAD=∠CAD. ∴, ∴BD=DE. ∴BD=DE=DC. ∴BC=2DE. 5.(1) ∵DB=DC, ∴∠DBC=∠DCB. ∵∠DBC=∠DAC, ∠DCB=∠DAE, ∴∠DAE=∠DAC, ∴AD平分∠EAC. (2)作DG⊥AB于G. ∵DF⊥AC,AD=AD, ∠DAE=∠DAC, ∴ΔAFD≌ΔAGD, ∴AF=AG,DG=DF, ∵DB=DC, ∴ΔDBG≌ΔDCF, ∴GB=FC, 即FC=GA+AB, ∴FC=AF+AB. 6. ∵矩形ABCD中,AO=BO, 而AO和BO的长是方程的两个根, ∴Δ=(2m-2)2-4(m2+11)=0 解得m=-5. ∴x2-12x+36=0, ∴x1=x2=6,即AO=BO=6, ∴BD=2BO=12, ∴AB=, ∴S矩形ABCD=5. 7. (1) ∵m和n是等腰三角形的腰和底边的长, ∴2m+n>0,2m-n>0, ∴Δ=4m2-n2=(2m+n)(2m-n)>0, ∴原方程有两个不同实根. (2)∵丨x1-x2丨=8, ∴(x1-x2)2=64, 即(x1+x2)2-4x1x2=64, ∵x1+x2=2m,x1x2=n2, ∴4m2-n2=64. ① ∵底边上的高是 , ∴. ② 代入②,得 n=2. n=2代入 ①, 得 m=. 8.结论:6b2=25ac. 证明: 设两根为2k和3k,则 由(1)有 k=- (3) (3)代入(2)得 6×, 化简,得 6b2=25ac.
初三(上)第一学月考试数学试题(B) 一、选择题:(14×3分=42分 1、Rt△ABC中,∠C=900,AC=5,BC=12,则其外接圆半径为( ) A、5 B、12 C、13 D、6.5 2、一元二次方程x2-3x-1=0与x2-x +3=0所有实数根 之和为( ) A、2 B、—4 C、4 D、3 3、在Rt△ABC中,∠C=900,a、b、c为三边,则下列等式中不正确的是( ) A、a=csinA B、a=bcotB C、b=csinB D、c= 4、下列语句中,正确的有( )个 (1)三点确定一个圆.(2)平分弦的直径垂直于弦 (3)长度相等的弧是等弧.(4)相等的圆心角所对的弧相等 A、0个 B、1个 C、2个 D、3个 5、下列结论中正确的是( ) A、若α+β=900,则sinα= sinβ; B、sin(α+β)=sinα+sinβ C、cot 470- cot 430 >0 D、Rt△ABC中 ,∠C=900,则sinA+cosA>1,sin2A+sin2 B=1 6、过⊙O内一点M的最长弦为4cm,最短弦为2cm,则OM的长为( ) A、 B、 C、1 D、3 7、a、b、c是△ABC的三边长,则方程cx2+(a+b) x + =0 的根的情况是( ) A、没有实数根 B、有二个异号实根 C、有二个不相等的正实根 D、有二个不相等的负实根 8、已知⊙O的半径为6cm,一条弦AB=6cm,则弦AB所对的圆周角是( ) A、300 B、600 C、600或1200 D、300 或1500 9、关于x的方程x2 - 2(1- k)x +k2 = 0有实数根α、β,则α+β的取值范围是( ) A、α+β≥1 B、α+β≤—1 C、α+β≥ D、α+β≤ 10、设方程x2- x -1=0的二根为x1、x2 ,则x12、x22为二根的一元二次方程是( ) A、y2+3y+1=0 B、y2+3y-1=0 C、y2-3y-1=0 D、y2-3y +1=0 11、若x1≠x2,且x12-2x1-1=0,x22-2x2-1=0,则x1x2的值为( ) A、2 B、- 2 C、1 D、- 1 12、要使方程组 有一个实数解, 则m的值为( ) A、 B、±1 C、± D、±3 13、已知cosα=,则锐角α满足( ) A、00<α<300 ;B、300<α<450;C、450<α<600;D、600<α<900 14、如图,C是上半圆上一动点,作CD⊥AB,CP平分∠OCD交⊙O于下半圆P,则当C点在上半圆(不包括A、B二点)移动时,点P将( ) A、随C点的移动而移动;B、位置不变;C、到CD的距离不变;D、等分 二、填空题(4×3分=12分) 1、某人上坡走了60米,实际升高30米,则斜坡的坡度i=_______. 2、如图,一圆弧形桥拱,跨度AB=16m,拱高CD=4m,则桥拱的半径是______m. 3、在实数范围内分解因式:x2y-xy-y=____________________。 4、由一个二元一次方程和一个二元二次方程组成的方程组的解是 ,, 试写出一个符合以上要求的方程组: _______________. 三、解答题(1 —4题,每题5分,5—6 题,每题6分,7—8题,每题7分,总分46分) 1、(5分)如图:在△ABC中,已知∠A=α,AC=b,AB=c. (1)求证:S△ABC =bcsinA. (2)若∠A=600,b=4,c=6,求S△ABC和BC的长。
2、(5分)用换元法解分式方程:- 4x2 +7=0.
3.(5分)解方程组:
4、(5分)如图,AB=AC,AB是直径,求证:BC=2·DE.
5、(7分)如图,DB=DC,DF⊥AC.求证:①DA平分∠EAC;②FC=AB+AF.
6、(7分)矩形的一边长为5,对角线AC、BD交于O,若AO 、BO的长是方程 x2+2(m-1)x+m2+11=0的二根,求矩形的面积。
7、(7分)已知关于x的方程x2-2mx+n2=0,其中m、n是一个等腰△的腰和底边的长。 (1)求证:这个方程有二个不相等的实数根。 (2)若方程的二根x1、x2满足丨x1-x2丨=8,且等腰三角形的面积为4,求m、n的值。
8、(5分)如果一元二次方程ax2+bx+c=0的二根之比为2:3,试探索a、b、c之间的数量关系,并证明你的结论。
参考答案: DDDAD,ADCAD,DBDB. 二. 1:1; 10; y(x-)(x-); . 三. 1.(1)作BD⊥AC于D,则 sinA=, ∴ BD=c·sinA, ∵SΔABC=AC·BD ∴SΔABC =bcsinA. (2) SΔABC=bcsinA =×4×6×sin600 =6. 2.原方程变为 设=y,则原方程变为 -2y+1=0,即2y2-y-1=0. ∴ y=1 或y=-. 当y=1时,2x2-3=1,x=±2. 当y=-时,2x2-3=-,x=±. 经检验,原方程的根是 ±2, ±. 3.由(2)得 (2x+y)(x-3y)=0. ∴ y=2x 或x=3y. ∴原方程组化为 或 用代入法分别解这两个方程组, 得原方程组的解为 ,,,. 4.连结AD. ∵AB是直径, ∴∠ADB=900. ∵AB=AC, ∴BD=DC, ∠BAD=∠CAD. ∴, ∴BD=DE. ∴BD=DE=DC. ∴BC=2DE. 5.(1) ∵DB=DC, ∴∠DBC=∠DCB. ∵∠DBC=∠DAC, ∠DCB=∠DAE, ∴∠DAE=∠DAC, ∴AD平分∠EAC. (2)作DG⊥AB于G. ∵DF⊥AC,AD=AD, ∠DAE=∠DAC, ∴ΔAFD≌ΔAGD, ∴AF=AG,DG=DF, ∵DB=DC, ∴ΔDBG≌ΔDCF, ∴GB=FC, 即FC=GA+AB, ∴FC=AF+AB. 6. ∵矩形ABCD中,AO=BO, 而AO和BO的长是方程的两个根, ∴Δ=(2m-2)2-4(m2+11)=0 解得m=-5. ∴x2-12x+36=0, ∴x1=x2=6,即AO=BO=6, ∴BD=2BO=12, ∴AB=, ∴S矩形ABCD=5. 7. (1) ∵m和n是等腰三角形的腰和底边的长, ∴2m+n>0,2m-n>0, ∴Δ=4m2-n2=(2m+n)(2m-n)>0, ∴原方程有两个不同实根. (2)∵丨x1-x2丨=8, ∴(x1-x2)2=64, 即(x1+x2)2-4x1x2=64, ∵x1+x2=2m,x1x2=n2, ∴4m2-n2=64. ① ∵底边上的高是 , ∴. ② 代入②,得 n=2. n=2代入 ①, 得 m=. 8.结论:6b2=25ac. 证明: 设两根为2k和3k,则 由(1)有 k=- (3) (3)代入(2)得 6×, 化简,得 6b2=25ac.
Tags:
|