首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 教案在线 → 数学 → 九年级数学教案 |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
第五册二次函数教学设计 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
收集整理:佚名 来源:本站整理 时间:2010-06-16 05:52:36 点击数:[] ![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
教学内容:人教版九年义务教育初中第三册第108页 教学目标: 1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念; 2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性; 3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。 教学重点:二次函数的意义;会画二次函数图象。 教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。 教学过程设计: 一. 一. 创设情景、建模引入 我们已学习了正比例函数及一次函数,现在来看看下面几个例子: 1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式 答:S=πR2. ① 2.写出用总长为 答:S=L(30-L)= 分析:①②两个关系式中S与R、L之间是否存在函数关系? S是否是R、L的一次函数? 由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢? 答:二次函数。 这一节课我们将研究二次函数的有关知识。(板书课题) 二. 二. 归纳抽象、形成概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) , 那么,y叫做x的二次函数. 注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数. 练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。 2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。 (若学生考虑不全,教师给予补充。如: (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。) 由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。 (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。) 三. 三. 尝试模仿、巩固提高 让我们先从最简单的二次函数y=ax2入手展开研究 1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢? 请同学们画出函数y=x2的图象。 (学生分别画图,教师巡视了解情况。) 2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。 解:一、列表:
二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。 练习:画出函数
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。 (这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。) 三. 三. 运用新知、变式探究 画出函数 y=5x2图象 学生在画图象的过程中遇到函数值较大的困难,不知如何是好。
教师出示已画好的图象让学生观察 注意:1. 画图象应描7个左右的点,描的点越多图象越准确。 2. 自变量X的取值应注意关于Y轴对称。 3. 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。 四. 四. 归纳小结、延续探究 教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质: 一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。 五. 五. 回顾反思、总结收获 在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。 (在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)
Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
最新热点 | 最新推荐 | 相关新闻 | ||
|
|
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |