首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心教案在线数学九年级数学教案



Tags:


   直线和圆的位置关系      ★★★ 【字体: 】  
直线和圆的位置关系
收集整理:佚名    来源:本站整理  时间:2010-06-16 05:48:24   点击数:[]    

1.知识结构

  2.重点、难点分析

  重点:直线和圆的位置关系的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础.

  难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

  3.教法建议

  本节内容需要一个课时.

  (1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

  (2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.
教学目标

  1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

  2、通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生

  观察、分析和概括的能力;

  3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

  教学重点直线和圆的位置关系的判定方法和性质.

  教学难点直线和圆的三种位置关系的研究及运用.

  教学设计:

  (一)基本概念

  1、观察:(组织学生,使学生从感性认识到理性认识)

  2、归纳:(引导学生完成)

  (1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

  3、概念:(指导学生完成)

  由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

  (1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

  (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

  (3)相离:直线和圆没有公共点时,叫做直线和圆相离.

  研究与理解:

  ①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

  ②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

  (二)直线与圆的位置关系的数量特征

  1、迁移:点与圆的位置关系

  (1)点P在⊙O d<r

  (2)点P在⊙O d=r

  (3)点P在⊙O d>r

  2、归纳概括:

  如果⊙O的半径为r ,圆心O到直线l的距离为d,那么

  (1)直线l和⊙O相交 d<r
  (2)直线l和⊙O相切 d=r;   文本框: (“形” “数”)
  (3)直线l和⊙O相离 d>r

  (三)应用

  例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

  (1)r=2cm; (2)r=2.4cm; (3)r=3cm.

  学生自主完成,老师指导学生规范解题过程.

  解:(图形略)过C点作CD⊥AB于D,

   在Rt△ABC中,∠C=90°,

   AB=

   ∵ ,∴AB·CD=AC·BC,

   ∴ (cm),

   (1)当r =2cm时  CD>r,∴圆C与AB相离;

   (2)当r=2.4cm时,CD=r,∴圆C与AB相切;

   (3)当r=3cm时,CD<r,∴圆C与AB相交.

  练习P105,1、2.

  (四)小结:

  1、知识:(指导学生归纳)

  

  2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

  (五)作业:教材P115,1(1)、2、3.

探究活动

  问题:如图,正三角形ABC的边长为6 厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

  略解:由正三角形的边长为6 厘米,可得它一边上的高为9厘米.

  ①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

  ②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即

文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:数学教案-圆内接四边形

  • 下一篇文章:可化为一元二次方程的分式方程
  • 返回上一页】【打 印】【关闭窗口
    中查找“直线和圆的位置关系”更多相关内容 5VAR论文频道
    中查找“直线和圆的位置关系”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››§12.2 一元二次方程的解法(1)—...
  • ››初三(上)第一学月考试数学试题(B) ...
  • ››你能证明它们吗? —— 初中数学第五...
  • ››数学教案-用计算器求平均数、标准...
  • ››4.4一元一次方程的应用(例5)
  • ››数学教案-方差
  • ››数学教案- 函数(二)
  • ››数学教案-6.4切线长定理
  • ››列方程解应用题 —— 初中数学第五...
  • ››数学教案-函数
  • ››直线和圆的位置关系(公开课) ——...
  • ››直线和圆的位置关系 —— 初中数学...
  • ››直线和圆的位置关系
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .