首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 电子通信 |
|
|||||
一种基于灰值形态学的汽车牌照提取方法 | |||||
收集整理:佚名 来源:本站整理 时间:2009-01-11 00:01:02 点击数:[] ![]() |
|||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 关键词:灰值动态学 卷积 模板卷积投影 牌照识别 基于图像理解的汽车牌照自动识别系统是智能交通系统一个重要分支,有着非常广泛的应用前景,而把汽车牌照从复杂的汽车图像中分割出来是汽车牌照自动识别系统必须解决的关键问题。在过去的十几年中,各国的科研人员提出了不少提取汽车牌照的方法。Choi和Kim提出利用Hough变换寻找垂直边缘提取汽车牌照的方法,此方法由于许多汽车前部散热器产生的垂直边缘和某些牌照边框的扭曲或某些汽车牌照没有边框而鲁棒性较差。S.K.Kim和H.J.Kim提出的基于遗传算法分割提取汽车牌照的方法,最大缺点是耗时长,难以进行实时处理。S.H.Park提出的一种基于神经网络提取汽车牌照的方法,使用二个时延神经网络在水平和垂直方向对输入图像进行滤波,得到牌照的候选区域,然后利用牌照的长宽比、面积、面积与周长比来区分真正的牌照区域与类牌照区域。此方法要求图像中的牌照尺寸基本不变,一旦图像中的牌照尺寸发生了较大的变化,必须对神经网络重新进行训练。T.R.Crimmins提出了一种数字形态学方法,此方法用不同尺寸的每个可能字符作为结构元素,采用击中击不中方法先提取输入图像中的字符,再根据牌照字符的语法得到汽车牌照,这种方法计算量非常大且易受噪声影响。C.H.Poon提出了一种灰值形态学方法,它通过检测字符中的直线段和字符间的空间来提取牌照,这种方法耗时较多,且没有利用版照的尺寸信息。C.M.Hwang提出了空间频率方法,它利用牌照区域内空间频率变化大的特性,对图像进行一阶差分。差分图在牌照区域内形成多个峰,然后利用峰的幅度、宽度和密度区分真正的牌照区域与类牌照区域。这种方法具耗时少、抗噪能力强的优点。本文提出的灰值形态学方法仅利用了牌照区域内空间频率变化大的特性而且利用了牌照区域字符笔划具有高曲的特性,因而比单纯的空间频率方法更加有效。通过建立牌照与卷积算子形态学结构元素尺寸的相互关系。本文提出的方法对不同尺寸牌照具有很好的鲁棒性。 数字形态学是一种重要的数字图像处理方法和理论。在数字形态学中,两种最基本的变换或运算是腐蚀和膨胀,其它形态学变换都可通过它们来定义。下面列出了一些灰值形态学变换的定义。 图像f(x,y)平移(a,b)定义为: f(a,b)(x,y)=f(x-a,y-b) 图像f(x,y)相对于原点的反射为: f^(x,y)=f(-x,-y) 二幅图像f(x,y)和g(x,y)的最小记为(f∧g)(x,y)。 当(x,y)位于图像f的定义域D(f)和图像g的定义域D(g)的交集D(f)∩D(g)内时: (f∧g)(x,y)=min{f(x,y),g(x,y)} 否则: (f∧g)(x,y)=0 二幅图像f(x,y)和g(x,y)的最大记为(f∨g)(x,y)。 当(x,y)位于图像f的定义域D(f)和图像g的定义域D(g)的交集D(f)∩D(g)内时: (f∨g)(x,y)=max{f(x,y),g(x,y)} 当(x,y)∈D(f)且(x,y)∈D(g)时 (f∨g)(x,y)=f(x,y) 当(x,y)∈D(g)且(x,y)∈D(f)时 (f∨g)(x,y)=g(x,y) f(x,y)被g(x,y)膨胀定义为: (f⊙g)(x,y)=max{f(x-a,y-b)+g(a,b)} (a,b)∈D(g) f(x,y)被g(x,y)腐蚀定义为: (f⊙g)(x,y)=max{f(x-a,y-b)-g(a,b)} (a,b)∈D(g) 开运算定义: fog=(f⊙g)⊙g 闭运算定义: f·g=(f⊙g)⊙g Top-Hat变换定义: Hat(f,g)=f-fog 与Top-Hat变换相对的是波谷检测器(Valley变换),其定义为: Valley(f,g)=(f·g)-f 形态学梯度有下面三种形式: Grad(f)=f-(f⊙g) Grad(f)=(f⊙g)-f Grad(f)={[(f⊙g)-(f⊙g)]}/2 在牌照提取算法中,需要用到卷积、模板卷积和卷积投影等概念。下面对它们进行定义。 对于图像[aij]m×n,i=0...m-1,j=0...n-1,模板[aij]p×q。p<m,q<n,其卷积、模板卷积和卷积投影都是一维数组。 水平模板卷积 垂直模板卷积投影vmp: 水平模板卷积投影hmp: 图1中牌照区域的长为173象素、高为36象素。从左到右、从上到下的8条曲线依次为牌照区域灰度图第10~17条水平方向的灰度值。通过观察发现,在牌照区域的水平方向不令空间频率变化大,而且具有许多陡峭的峰(欲)和高曲率点。而灰值形态学的梯度变换可以对图像进行高通滤波,灰值形态学的Top-Hat变换和Valley变换可以撮高曲率点、波峰和波谷。 进行形态学变换,需要考虑二个因素:结构元素和变换类型。变换类型准备采用灰值形态学的梯度变换、Top-Hat变换和Valley变换。结果元素采用n×1的维水平结构,以提取水平方向上的高频分量、波峰和波谷。结构元素的大小n对Top-Hat变换和Valley变换的结果结构元素的大小n对Top-Hat变换和Valley变换的结果有着很大的影响,因此问题的关键是怎样确定n。 n=Integer{(w/k)+b} 式中的Integer()表示对括号内的值取整。w、b都为整数。根据经验令w、b分别为25和0,则: n=Integer(w/25) 由上式可知,当牌照的宽度w变化25个象素时,结构元素的大小n才变化1个单位,也就是说n对w不是很敏感。 牌照区域提取算法包括以下几步: (1)缩小图像:对输入的灰值汽车图像进行隔行隔列抽样,得到一幅大小为四分之一原因的新图像。接下列抽样,得到一幅大小为四分之一原图的新图像。接下来的处理均在新图像上进行,这样可以大大减少处理时间,提高算法的效率。根据形态学的尺度变换兼容性原理,对图像缩小(放大)后再进行形态学变换,只要对结构元素做相应的变换,结果不变。 (2)水平分割:对汽车图像进行水平分割,得到几个可能含牌照的水平区域。 (3)垂直分割:对第(2)步所得到的每一个水平区域进行垂直分割,得到一些牌照的候选区域。 (4)牌照区域甄别:分析各个候选区域得出真正的牌照区域。 Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |