首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 电子通信 |
|
|||||||||||||||||||||||
TCA785移相控制芯片应用方法的改进 | |||||||||||||||||||||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 23:54:20 点击数:[] ![]() |
|||||||||||||||||||||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 关键词:TCA785;移相控制芯片;晶闸管 1 引言 目前大功率逆变电源的直流部分一般利用三相桥式整流方式来实现,可以采用全控或者不控方式。全控桥式整流主要通过改变晶闸管触发相位的方法来调节直流母线电压的高低, TCA785是德国西门子(Siemens)公司开发的第三代晶闸管单片移相触发集成电路,与其它芯片相比,TCA785具有温度适用范围宽,对过零点的识别更加可靠,输出脉冲的整齐度更好,移相范围更宽等优点。另外,由于它输出脉冲的宽度可手动自由调节,所以适用范围更为广泛。 TCA785的基本引脚波形如图1所示。其中5脚为外接同步信号端,用于检测交流电压过零点。10脚为片内产生的同步锯齿波,其斜坡最大及最小值由9、10两脚的外接电阻与电容决定。通过与11脚的控制电压相比较,在15和14脚可输出同步的脉冲信号,因此,改变11脚的控制电压,就可以实现移相控制,脉冲的宽度则由12脚外接电容值决定[1],当选择双窄脉冲的驱动方式时, 实现三相桥式相控整流的一般方法是利用三相同步变压器从电源进线端引入三路同步信号,这样,将同步信号整形后分别输到三片TCA785(编号为A、B、C)的5脚,就能控制6只晶闸管,然后通过引脚复用即可实现双窄脉冲方式驱动。双窄脉冲方式由于驱动脉宽窄,因而可以有效地减小驱动用脉冲变压器的体积,防止磁芯饱和[2]。该方法的主电路及同步变压器如图2所示,三片TCA785芯片的引脚与所控制的晶闸管的对应关系如表1所列。晶闸管通过一个△/Y型同步变压器为TCA785提供同步信号,当进线相序(如图2所示)为正序A、B、C时,同步变压器的三个输出端所对应的中性点的实际电压向量为AC、BA、CB,将AC接至TCA785(A),BA接至TCA785(B),CB接至TCA785(C),即可实现正序输入时晶闸管的同步驱动。现以T5~T1换流为例进行分析:T5至T1管自然换流点滞后于A相由负到正过零点30°,即TCA785(A)的15脚输出至少应该滞后于该过零点30°,而电压AC由负到正过零点正好滞后于A相30°,因而用AC作为TCA785(A)的同步信号就可以实现最大范围的移相控制[3]。
其它晶闸管的分析与此类似,即用相应的线电压代替相电压作为同步信号。图3所示是一个周期的驱动时序。从A相的自然换流点开始,上、下桥臂晶闸管驱动顺序分别为:1→1→3→3→5→5→1和6→2→2→4→4→6→6。 4.1 电源进线电压的相序问题及解决方法 实验发现,如果直接利用同步变压器的输出作为同步信号,只能在一种输入相序(正序或者逆序)下工作,一旦输入相序接法改变,整流就不能正常进行。当输入相序为正序时,根据前述接线方法,可以使相控整流正常工作,但是当输入相序变为逆序A、C、B时,TCA785(A)的同步信号变为AB,TCA785(B)的同步信号将变为CA, 实际上,由于三相全控桥式整流各管可以互换,因此通过改进同步信号获取电路即可做到整流与输入相序无关,从而防止了相序接错损坏晶闸管的问题,同时还可提高调试效率。通过分析发现,当输入为逆序时,接到TCA785(A)上的同步信号应该是BC,而接到TCA785(B)上的同步信号应该是AB,TCA78 Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |