首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 电子通信 |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
ADSP-21535Blackfin的MemDMA高速通信 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 23:54:10 点击数:[] ![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 关键词: ADSP-21535, Blackfin Mem DMA ADSP-21535 Blackfin 是美国AD公司和Intel 公司于2001年底联合推出的一款定点DSP, RISC指令结构,运作高效,具有十分优异的性能。该DSP具有300MHz的主频,2个40bit的MAC(乘加器)和2个32bit的ALU(算术逻辑单元),4个8bit的视频处理单元,16个地址寻址单元。该DSP内部集成了308KB的RAM,并具有丰富的外部接口,如PCI、USB、SPI、同步和异步串口等。同时,芯片内部设计了看门狗和多种定时器,充分满足软件工程稳定性的设计要求。值得一提的是,21535可以动态地控制电压输入,调整运行频率,减少芯片功耗,十分适用于移动产品的设计。 ADSP-21535的内存访问支持I/O方式、内存映射和多种DMA方式,其中Mem DMA(Memory to memory DMA)方式是最快的一种并行通信方式。因此,笔者在设计时选择了Mem DMA作为高速通信方式。由于21535支持多种内存,因此在设计Mem DMA时,必须对21535的内存管理有一个详细的了解。 1 ADSP-21535的内存管理 21535的内存管理十分强大。它把存储器视为一个统一的4GB的地址空间,使用32位地址。所有的资源,包括内部存储器、外部存储器、PCI地址空间和I/O控制寄存器,都具有独立的地址空间。此地址空间的各部分存储器按照分级结构排列,以提供较高的性能价格比。一些快速、低延迟的存储器(如L1)的位置接近处理器核心,而低成本低性能的存储器远离核心。 芯片内部的308KB RAM中,其中L1(一级缓存)52KB,L2(二级缓存)256KB;外部地址访问空间可以高达768MB,通过EBIU(External Bus Interface Unit,外部总线接口单元)进行管理。EBIU支持多种内存,如SDRAM、SRAM、ROM、EPROM、FLASH、FIFO等。内存地址的具体配置空间如图1所示。 L2作为DSP的二级缓存,是一个统一的指令和数据存储器,能够根据系统设计要求同时存放代码和数据。L2具有DSP核心同样的带宽,但是延迟时间较长,访问L2单个独立的地址时系统需要经过7个周期的延时,这时它的访问速度在42.8Mbps左右。所以如果程序比较大,必须在L2中编写程序时,通常将L1配置为L2的Cache,这样,速度可以大大加快。 21535支持的片外存储器种类很多,值得一提的是它的SDRAM控制器。21535集成的SDRAM控制器能够以fSCLK(系统时钟,为核心时钟的若干分频)的速度,与多达4个Bank的工业标准SDRAM或者DIMM接口。每个Bank可以配置为16MB~128MB的存储器,符合PC133 SDRAM的标准。 存储器的DMA控制器提供高带宽的数据传输能力,它能够在内部L1/L2存储器和外部存储器(包括PCI存储空间)之间执行代码或者数据的块传输。 为了描述Mem DMA序列,DMA控制器使用一套名为描述子块(Descriptor)的参数。当需要后继的DMA序列时,这些描述子块被链接起来。这样,一个DMA序列完成时能够自动初始化下一个序列,并将其启动。如果不需启动下一个序列,只要将其指向一个内容为0的地址空间即可。如果下一次链接指向原描述子块,则DMA完成后暂停。为访问整个ADSP-21535的地址空间,源地址和目的地址描述子块采用了全32位地址的基指针。两个描述子块均为5个字的连续空间,需要注意的是该连续空间必须定义在L2范围内。描述子块内包含的内容如图2所示。 Mem DMA规定,描述子块所在的首地址必须传入相关的寄存器。描述子块首地址的高16位装入DMA_DBP寄存器(DMA Descriptor Base Pointer Register,DMA描述子块基地址寄存器)内。由于该寄存器严格限定必须在0xF000~0xF003,这就限定了源和目的地址描述子块只能定义在L2存储器内,并且高16位地址相同。 描述子块首地址的低16位放在两个寄存器中,源地址描述子块低16位装入MDS_DND寄存器(Source Memory DMA Next Descriptor Pointer Register,DMA源地址下一个描述子块寄存器),而目的地址描述子块低16位装入MDD_DND寄存器(Destination Memory DMA Next Descriptor Pointer Register,DMA目的地址下一个描述子块寄存器)。其说明如图3所示。 在描述子块的地址传入相应寄存器后,后面的四项先配置,然后设置第一项。也就是对管理DMA启动参数的寄存器进行参数配置。两个配置寄存器的详细内容如图4所示。例如当目的地址寄存器为0x8003,源地址寄存器为0x8001时,传输的数据总长=DMA传输的长度×字。需要注意的是,虽然此时传输以16位(字长)传输,但DMA的带宽是32位,剩下的带宽资源将被浪费。8位传输时,带宽资源利用率更低。 下面,以一个具体的32位DMA例子说明上面的描述子块和多个寄存器的使用方法。 R0.H = 0x8009 //DMA源配置字,设置为32位传输 R0.L = 0x800 //DMA长度 R1.L = 0x2000 //DMA源地址低16位 R1.H = 0xf000 //DMA源地址高16位,这里指向L2 R2.L = RAM_READ //DMA源描述子块首地址 低十六位,DMA读 R2.H = 0x800b //DMA目的配置字,设置为32位传输 R3.L =0x0000 //DMA目的地址低16位 R3.H =0xff90 //DMA目的地址高16位,这里指向 L1数据存储器-Bank B R4.L = RAM_WRITE //DMA目的描述子块首地址低 十六位,DMA写 P0.L = RAM_READ //将32位的源描述子块的地址 载入P0 P0.H = RAM_READ P1.L = RAM_WRITE //将32位的目的描述子块的地 址载入P1 P1.H = RAM_WRITE WP0+0x2 = R0 //将DMA长度写入源描述块第 二个字中 P0+0x4 = R1 //将DMA的32位源起始地址 写入源描述块第三第四个字中 WP0+0x8 = R2.L //将下一个源描述子块的地址 写入源描述块第五个字中 WP1+0x2 = R0 //将DMA长度写入目的描述块 第二个字中 P1+0x4 = R3 //将DMA的32位目的起始地址 写入目的描述块第三第四个字中 WP1+0x8 = R4 //将下一个目的描述子块的地 址写入目的描述块第五个字中 WP0 = R0.H //将DMA源配置字写入源描述 块第一个字中 WP1 = R2.H //将DMA目的配置字写入目的 描述块第一个字中 R6 = P0 //将P0的值同时存在R6内 P2.L = 0x390A //将DMA源描述子块配置寄存 器的地址传给P2 P2.H = 0xFFC0 WP2 = R6.L //将DMA源描述子块所在地址 的低16位传给P2指向的地方 P3.L = 0x4880 //将描述子块基地址寄存器的 地址传给P3 P3.H = 0xFFC0 WP3 = R6.H //将DMA源描述子块所在地址 的高16位传给基地址寄存器 P4.L = 0x380A P4.H = 0xFFC0 //将DMA目的描述子块配置寄 存器的地址传给P4 R6 = P1 //将P1的值转存到R6 WP4 = R6.L //将目的描述子块所在地址的 低16位传给配置目的地址寄存器 P5.L = 0x3902 P5.H = 0xFFC0 //将DMA源地址配置寄存器所 在地址传给P5 R6 = WP5 BITSETR60 //设置R6的最低位为1,表示 准备启动读DMA I0.L = 0x3802 I0.H = 0xFFC0 //将DMA目的地址配置寄存器 的地址传给I0 R7.L = WI0 BITSETR70 //设置R7的最低位为1,表示 准备启动写DMA WP5 = R6 //将R6和R7的低16位写入 两个配置寄存器中,真正启动DMA WI0 = R7.L DMA_WAIT //等待DMA结束 R6 = WP1 //根据写描述子块第一个字的 最高位判断描述子块的所有权 cc = bittstR615 IF cc JUMP DMA_WAIT //如果为1,表示还在DMA 状态,继续判断,等待 RTS .align 4 //在L2空间范围内定义两个 描述子块,要求4个字节对齐 .BYTE2 RAM_READ5 .align 4 .BYTE2 RAM_WRITE5 值得注意的是,在上述DMA例程中,笔者使用了查询等待方式,但中间完全可以插入其他指令,例如DSP还可以同时作双乘加和两次32位取数。只要不访问正在DMA读写的地址区域,没有任何影响。这意味着,在系统DMA的同时,DSP可以同时进行其他操作,这一点对于提高DSP的效率至关重要。 4 各种内存空间的DMA访问指标测试及分析 根据以上配置,笔者对ADSP-21535的DMA性能进行了比较详尽的测试。测试数据如表1所示。
注:测试环境-DSP核心时钟300MHz,系统时钟120MHz,SDRAM为PC133标准。样本采样:各15次 从表1中的实测数据可以看出,DMA的速度均在18.7M双字/秒以上,最高速度达46.9M双字/秒,可以满足工程中高速采集的需要。从表中数据可以得出以下结论: (1)DMA双向速度不对称,将源地址和目的地址交换后,速度会发生变化; (2)低速向高速区域传输时,要比反向传输快; (3)同类区域DMA一般比区域之间DMA要慢。如L1 DMA到L1,比L1 DMA到L2和SDRAM都要慢一些。其它区域也有类似现象。 (4)高速区域DMA速度并不一定快,如L1区域DMA速度总体表现反而最低。 |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |