首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 电子通信 |
|
|||||
开关电源的小信号模型及环路设计 | |||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 23:48:58 点击数:[] ![]() |
|||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo (1) S断开,D1续流导通时,状态方程变为 L(dil/dt)=-Uo (2) L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L[d(il+il')/dt]=(D+d)(Uin+Uin')-(Uo+Uo') (4) L(dil'/dt)=DUin'+dUin-Uo' (5) 由图1,又有 iL=C(duc/dt)+Uo/R0 (6) Uo=Uc+ReC(duc/dt) (7) 式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得 iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt)) (8) 式(8)的推导中假设Re<<Ro。由于稳态时dil/dt=0,dUo/dt=0,由式(8)得稳态方程为iL=Uo/Ro。这说明稳态时电感电流平均值全部流过负载。对式(8)中各变量附加小信号波动量得 式(9)减式(8)得 iL+ReC(dil/dt)=1/Ro(Uo+CRo(dUo/dt)) (10) 将式(10)进行拉氏变换得 iL(s)=(Uo(s)/Ro)·[(1+sCRo)/(1+sCRe)] (11) (s)=(11)一般认为在开关频率的频带范围内输入电压是恒定的,即可假设=0并将其代入式(5),将式(5)进行拉氏变换得 sLiL'(s)=d(s)Uin-Uo'(s) (12) 由式(11),式(12)得 Uo'(s)/d(s)=Uin[(1+sCRe)/(s2LC+s(ReC+L/Ro)+1] (13) iL'(s)/d(s)=[(1+sCRo)/s2LC+s(ReC+L/Ro)+1]·Uin/Ro (14) 式(13),式(14)便为Buck电路在电感电流连续时的控制-输出小信号传递函数。 电压模式控制方法仅采用单电压环进行校正,比较简单,容易实现,可以满足大多数情况下的性能要求,如图2所示。 图2中,当电压误差放大器(E/A)增益较低、带宽很窄时,Vc波形近似直流电平,并有 D=Vc/Vs (15) d=Vc'/Vs (16) 式(16)为式(15)的小信号波动方程。整个电路的环路结构如图3所示。图3没有考虑输入电压的变化,即假设Uin=0。图3中,(一般为0)及分别为电压给定与电压输出的小信号波动;KFB=UREF/Uo,为反馈系数;误差e为输出采样值偏离稳态点的波动值,经电压误差放大器KEA放大后,得;KMOD为脉冲宽度调制器增益,KMOD=d/=1/Vs;KPWR为主电路增益,KPWR=/d=Uin;KLC为输出滤波器传递函数,KLC=(1+sCRe)/[S2LC+s(ReC+L/Ro)+1]。 VMC方法有以下缺点: 1)没有可预测输入电压影响的电压前馈机制,对瞬变的输入电压响应较慢,需要很高的环路增益; 2)对由L和C产生的二阶极点(产生180°的相移)没有构成补偿,动态响应较慢。 VMC的缺点可用下面将要介绍的CMC方法克服。 平均电流模式控制含有电压外环和电流内环两个环路,如图4所示。电压环提供电感电流的给定,电流环采用误差放大器对送入的电感电流给定(Vcv)和反馈信号(iLRs)之差进行比较、放大,得到的误差放大器输出Vc再和三角波Vs进行比较,最后即得控制占空比的开关信号。图4中Rs为采样电阻。对于一个设计良好的电流误差放大器,Vc不会是一个直流量,当开关导通时,电感电流上升,会导致Vc下降;开关关断,电感电流下降时,会导致Vc上升。电流环的设计原则是,不能使Vc上升斜率超过三角波的上升斜率,两者斜率相等时就是最优。原因是:如果Vc上升斜率超过三角波的上升斜率,会导致Vc峰值超过Vs的峰值,在下个周波时Vc和Vs就可能不会相交,造成次谐波振荡。 采用斜坡匹配的方法进行最优设计后,PWM控制器的增益会随占空比D的变化而变,如图5所示。 当D很大时,较小的Vc会引起D较大的改变,而D较小时,即使Vc变化很大,D的改变也不大,即增益下降。所以有 d=DV'/Vs (17) 不妨设电压环带宽远低于电流环,则在分析电流环时Vcv为常数。当Vc的上升斜率等于三角波斜率时,在开关频率fs处,电流误差放大器的增益GCA为 GCA[d(iLRs)/dt]=GCA(Vo/L)Rs=Vsfs (18) GCA=Vc'/(iL'Rs)=VsfsL/(UoRs) (19) 高频下,将式(14)分子中的“1”和分母中的低阶项忽略,并化简,得 iL'(s)=[d(s)Uin]/sL (20) 由式(17)及式(20)有 (iL'Rs)/Vc'=[Rsd(s)Uin/(sL)]/[d(s)Vs/D]=(RsUinD)/(sLVs) (21) 将式(19)与式(21)相乘,得整个电流环的开环传递函数为 (RsUinD/sLVs)·(VsfsL)/(UoRs)=fs/s (22) Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |