首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 电子通信 |
|
|||||||||||||||||
基于FPGA的毫米波多目标信号形成技术的研究 | |||||||||||||||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 22:39:41 点击数:[] ![]() |
|||||||||||||||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 关键词:毫米波雷达模拟器 多目标形成 现场可编程门阵列 近年来,精确制导武器的研制已经成为现代武器研制的一大热点,而毫米波多目标信号发生器正是精确制导武器研制的关键手段。毫米波多目标信号发生器通过模拟的方法产生多种类型高精度的雷达多目标回波信号,在实际雷达系统前端不具备的条件下对雷达系统后级进行调试,便于制导武器的性能测试,大大加快新武器的研制进程。毫米波多目标信号产生的关键是要求回波信号距离分辨率极高,常规的多目标信号产生方法如使用数字延时线产生多目标之间的延时,其控制不灵活,并且有些延时线需要接ECL电源,使用不方便也增加了设计的复杂度。使用分立元件实现延时则使电路元件过多,电路的稳定性及延时的精确性也会大大降低。本文介绍一种新的产生毫米波雷达模拟器的多目标信号的方法,针对毫米波多目标信号回波之间距离分辨率要求高的特点,采用现场可编程门阵列(FPGA)实现回波之间的时延。本文详述了使用FPGA控制及产生延时多目.标信号间精确延时的设计方法。该方法实现电路体积小、稳定性高,同时使延时精度得到了很大的提高,具有很好的工程应用价值。 为了精确制导武器研制的需要,本信号发生器根据外部设定的工作方式及工作参数产生相应的毫米波雷达中频多目标信号。每个脉冲的开始保持严格的初相值,脉冲宽度间的多普勒信号调制要求回波目标信号相一致,目标之间的距离分辨率为0.3m,目标回波间延时范围为0~10ns。整个系统基于DSP+FPGA结构,高速DSP主要生成多目标信号产生器的回波数据,设计中采用静态RAM扩充存储一个相干区的回波信号的程序及数据,用EPROM存储相位表。FPGA实现所有的控制、地址发生等逻辑及产生多回波信号回波间分辨率为2 ns的时延。输入输出的显示由单片机控制。图1所示为多目标信号发生器产生一路模拟回波信号的结构框图,回波数据包含I、Q两路数据,系统中每路回波信号数据采用两片双口RAM进行存储。将从双DA输出的各路模拟回波信号相加(1支路与1支路相加,Q支路与Q支路相加),然后进行正交调制得到毫米波雷达模拟器多目标中频信号。整个系统结构简单、体积小、可靠性高。 回波信号包括目标信号、噪声和杂波信号两部分。利用回波数学方程考虑目标杂波特性以及随机噪声,产生运动目标的多普勒回波信号的数学方程为: Si=Aiexp[-j 4πfi/c(R0-ut)]+G1(t)+G2(t) 2 多目标信号间高精度高可靠性延时的设计与实现 多目标信号各目标回波之间的距离体现在回波之间的时延上,多目标信号产生器的各回波之间的时延由FPGA产生。DSP将计算出的回波信号数据存储在双口RAM中,然后由双DA读出数据进行数模转换输出模拟的回波信号。FPGA需要为数据转换提供时序控制信号、读数据时的地址信号及双DA的转换时钟信号等;将时钟信号经过FPGA进行精确的延时,延时后的信号作为双口RAM读出数据时地址发生器的时钟信号,将延时后的信号与DSP提供给双DA的初始化信号相与后提供给双DA作为数据转换时钟。 DCM相移具有可变相移和固定相移两种模式。设计中,由于延时量由用户外部输入提供,故采用可变相移模式。在可变相移模式中,用户可以动态地反复将相位向前或向后移动输入时钟周期的1/256。可变相移模式中,相移控制针如表1所示。当PSEN信号有效,则相移值可以由与相移时钟PSCLK同步的PSINCDEC信号决定动态地增加或减少,本设计中相移时钟由输入时钟提供。PSDONE输出信号与相移时钟同步,它输出一个相移时钟周期的高电平表示相移已经完成,同时表示一个新的相移可以开始。输入时钟经过DCM移相电路移相后,得到所需延时之后的时钟输出。将该输出时钟作为双口RAM读出数据时地址发生器·的触发时钟及双DA进行数据转换的时钟输入,便可以实现回波信号的精确延时。
如前所述,毫米波多目标信号产生的关键是实现回波信号之间极高的距离分辨率。本文采用FPGA提供精确时延实现多目标信号产生的方法,为系统调试提供了极为有效的手段。设计采用自顶向下的设计方法,采用硬件描述语言VHDL完成DCM移相、状态机控制及参数输入三大功能模块的设计输入。DCM的相移模式为可变相移模式。根据用户输入的所需延时量,在-64~+64之间取一个整数相移值,通过时钟选择器选择用CLK0、CLKl80实现0~10ns的多种时延。 DCM工作在可变相移模式,因此对其移相操作的控制相对复杂。数字电路常用的控制单元有状态机及时序电路、状态机实现控制等优化设计。采用状态机编辑器,用户不用自己写HDL代码,只要输入功能块的状态机图表描述,编辑器就可以自动生成与此描述相对应的HDL代码,使设计变得异常灵活方便。状态机的主要功能是产生DCM的PSEN输人信号,控制DCM的相移操作,同时给出相移完成提示信号PSSUCCEED。 Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |