首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 电子通信 |
|
|||||
一种QCM信号在线采集系统的实现 | |||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 22:26:45 点击数:[] ![]() |
|||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 关键词:石英晶体微天平 DSP 谐振频率 QCM(Quartz Crystal Microbalance)是由AT切石英晶体片和镀在其上下表面的金属电极构成的一种谐振式传感器。其结构如图1所示。 在国外,QCM在气相中的应用已经相当成熟,近几年,对液相中的QCM应用的研究也取得了很大进步,并且已经出现了很多商品化的产品,但是它们的价格非常昂贵。国内的相关研究相对较少。本文提出了一种基于DSP的QCM信号在线采集系统。该系统主要由高频信号发生器、QCM传感器和信号采集处理部分组成,结构简单、成本低。借助DSP强大的数字信号处理功能,实现了在线测量,并且保证了较高的测量精度。 1 QCM测量原理 石英是具有压电性质的物质之一,当外加交变电压的频率为某一特定频率时,石英晶片振幅会急剧增加,这就是压电谐振。 1959年Sauerbrey在假定外加持量均匀刚性地附着于QCM的金电极表面的条件下,得出了QCM的谐振频率变化与外加质量成正比的结论。即: 式中,Δf为QCM谐振频率的变化;f0o QCM的基频;c66为石英的辰电强化剪切模量;pq为石英的密度:2.65lg/cm3;A为金电极的面积;Sf为传感器的灵敏度;Δm为电极表面的质量变化。通过(1)式可得到QCM电极表面的质量变化。由于QCM的灵敏度很高,可以达到纳克级,并且结构简单,因此一问世就得到了广泛的应用,如用于真实或空气中膜的厚度检测等。 20世纪90年代以来,随着研究的深入,QCM在液相中也取得了广泛的应用,主要用于生物、化学等领域的检测中。1982年Monura和Okuhara最先提出了可以在液相中驱动QCM振动的电路,将QCM的应用扩大到了液相。1985年Kanazawa和Gordon推出了QCM在牛顿流体中振荡时其谐振频率变化与液体的粘度和密度的关系式,即: 从式(1)、(2)可以看出,QCM谐振频率的变化量Δf是关键的待测量。 2 系统方案 目前驱动QCM振动并采集其输出信号的方法主要有两种:(1)振荡电路法;(2)频谱分析法。振荡电路法的基本原理为:将QCM接入自激振荡电路中,使其构成选频元件,电路的振荡频率等于QCM的谐振频率。通过电路振荡频率的变化可得到QCM谐振频率的变化,从而可推测出待测物质性质的变化。频谱分析法的基本原理为:扫描QCM在其谐振频率附近的一段频率范围内的频谱(幅频和相频特性),通过该频谱可得到QCM的谐振频率、Q值等参数。与振荡电路的方法相比,频谱分析的主要优点有:在大阻尼介质中不会停振、测量结果信息量大、形象直观、计算解释容易。本设计给出了一种基本频谱分析法的QCM信号采集系统。 3 系统分析 电路的正弦信号产生部分由直接数字信号合成(DDS)芯片、自动增益控制(AGC)和运放(AMP)等组成。DDS接收DSP的控制信号,产生频率可控的正弦信号;AGC调整DDS的输出信号,使其峰-峰值始终保持为一个已知的定值;AMP则完成信号的放大和阻抗转换。由于信号产生部分增加了自动增益控制使其产生的信号的信号的峰-峰值保持恒定,从而减少了待测信号的数目,简化了测量和处理的过程。 信号产生器部分产生的正弦信号作用在如图2中所示的两个反相比例电路上,反相比例电路的输出信号包含QCM在相应频率下的等效阻抗的幅值和相角信息。根据反相比例电路虚地的原理,作用在QCM上的电压始终保持为信号产生部分的输出电压与地之间的电压差。采用这种结构的好处是:(1)使作用在QCM上的电压保持恒定,简化了处理过程。(2)只通过一个反相比例电路的输出信号即可单独得到QCM等效阻抗的幅值(通过后面的计算将会得到此结论)。 反相比例电路输出信号的采集和处理部分的核心是两个乘法器和低通滤波器。设信号产生部分的输出信号电压为:u=u0coswt,用相量表示为:u。则含有QCM的反相比例电路的输出为: 式中,R1为参考电阻Z和φ为其对应的幅值和相角。另一个反相比例电路的输出为: 式中,R2、R3分别为参考电阻R2、R3的阻值。u1、u2作为两个模拟乘法器的输入。乘法器1的输出为: 两路输出信号经低通滤波(LPF)后的输出为: 这两个直流信号经过放大器放大后由ADC芯片采集,所采集的数字信号经DSP处理后送往PC机供分析、显示之用。为保证采集的精度,此处的放大器选用AD620芯片。AD620具有高精度、低漂移和低哭声的优点,另外AD620可以通过一个外接电阻方便地调节放大倍数。ADC芯片采用双通道的高精度转换 Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |