络(ANNs)和支持向量机(SVMs)。 判别分析常用于临床辅助鉴别诊断,计量诊断学就是以判别分析为主要基础迅速发展起来的一门科学。如临床医生根据患者的主诉、体征及检查结果作出诊断;根据各种症状的严重程度预测病人的预后或进行某些治疗方法的疗效评估;以及流行病学中某些疾病的早期预报,环境污染程度的坚定及环保措施、劳保措施的效果评估等。 在生物信息学针对基因的研究工作中,由于借助了精确的生物实验,研究者通常能得到基因(样本)的准确分类,如,基因的功能类、样本归结于疾病(正常)状态等等。当利用了这些分类信息时,就可以采用判别分析的方法对基因进行分类,生物信息学中又称为有监督的分析(Supervised Analysis)。例如,基因表达数据分析中,对于已经过滤的基因,前三种方法的应用较为简单。而支持向量机(SVMs)和人工神经网络(ANNs)是两种较新,但很有应用前景的方法。 (三)相关分析 相关分析(correlation analysis)是医学统计学中研究两变量间关系的重要方法。它借助相关系数来衡量两变量之间的关系是否存在、关系的强弱,以及相互影响的方向。其基本内容包括:线性相关系数、秩相关系数、相关系数的检验、典型相关分析等。 我们常常可以借助相关分析判断研究者所感兴趣的两个医学现象之间是否存在联系。例如,采用秩相关分析我们发现某种食物中黄曲霉毒素相对含量与肝癌死亡率间存在正相关关系;采用线性相关方法发现中年女性体重与血压之间具有非常密切的正相关关系等等。 生物信息学中可以利用相关分析建立基因调控网络。如果将两个不同的基因在不同实验条件下的表达看作是两个变量,相关分析所研究的正是两者之间的调控关系。如采用线性相关系数进行两基因关系的分析时,其大小反应了基因调控关系的强弱,符号则反应了两基因是协同关系(相关系数为正),还是抑制关系(相关系数为负)。 四、意义 生物信息学不仅是医学统计学的研究前沿,更是医学研究由宏观向微观拓展的重要领域,其研究内容已逐渐为多数医学院校的学员了解和熟悉。而如何对新技术产生的生物实验数据进行准确合理的分析,却成为生物信息学研究的主要瓶颈之一。 在医学统计学课堂教学中引入生物信息学实例,而不仅仅局限于常见的医学、卫生领域的例子,将难以理解的统计理论和方法与前沿的生物实例相结合,拓宽了学员的视野,提高了学员的学习兴趣,更可以加深对所学知识的理解;与此同时,使学员掌握了生物实验数据的先进分析方法,扩大了学员的知识面,提高了他们今后开展医学科研工作的能力。 还有一些医学统计学方法目前也逐渐应用于生物信息学研究中,诸如:遗传算法、熵理论等等。但这些方法已经超出了医学统计学课堂教学的范围,我们将尝试在第二课堂或选修课中,作为补充知识进行讲授,供那些学有余力的学员学习交流 上一页 [1] [2]
Tags:
|