首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 教案在线 → 数学 → 九年级数学教案 |
|
|||||
数学教案-二次函数y=ax2的图象(一) | |||||
收集整理:佚名 来源:本站整理 时间:2010-06-16 05:52:24 点击数:[] ![]() |
|||||
课题 二次函数y=ax2的图象(一)
一、教学目的 1.使学生初步理解二次函数的概念。 2.使学生会用描点法画二次函数y=ax2的图象。 3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点 重点:对二次函数概念的初步理解。 难点:会用描点法画二次函数y=ax2的图象。
三、教学过程 复习提问 1.在下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。 2.什么是一无二次方程? 3.怎样用找点法画函数的图象?
新课 1.由具体问题引出二次函数的定义。 (1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。 (2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。 (3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示? 解:(1)函数解析式是S=πR2; (2)函数析式是S=30L—L2; (3)函数解析式是y=50(1+x)2,即 y=50x2+100x+50。 由以上三例启发学生归纳出: (1)函数解析式均为整式; (2)处变量的最高次数是2。 我们说三个式子都表示的是二次函数。 一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。 2.画二次函数y=x2的图象。 按照描点法分三步画图: (1)列表 ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同; (2)描点 按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点; (3)边线 用平滑曲线顺次连接各点,即得所求y=x2的图象。 注意两点: (1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的区间是无限延伸的。 (2)所画的图象是近似的。 3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0.2的间距取x值表和图13-14。按课本P118内容讲解。 4.引入抛物线的概念。 关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。
小结 1.二次函数的定义。 (1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。 2.二次函数y=x2的图象。 (1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题 下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c? (1)y=2-3x2; (2)y=x (x-4); (3)y=1/2x2-3x-1; (4)y=1/4x2+3x-8; (5)y=7x(1-x)+4x2; (6)y=(x-6)(6+x)。 作业:P122中A组1,2,3。
四、教学注意问题 1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。 2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考: (1)y=x2的图象的图象有什么特点。(答:具有对称性。) (2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。) Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
最新热点 | 最新推荐 | 相关新闻 | ||
|
|
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |