首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心教案在线数学八年级数学教案
   等腰三角形的性质      ★★★ 【字体: 】  
等腰三角形的性质
收集整理:佚名    来源:本站整理  时间:2010-06-16 00:45:24   点击数:[]    

知识结构

  重点与难点分析:

  本节内容的重点是等腰三角形的性质及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。等腰三角形的性质为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。

  本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。

  教法建议:

  数学教学的核心是学生的“再创造”.根据这一指导思想,本节课教学可通过精心设置的一个个问题链,激发学生的求知欲,最终在老师的指导下发现问题、解决问题.为了充分调动学生的积极性,使学生变被动学习为主动学习,本课教学拟用启发式问题教学法.具体说明如下:

  (1)发现问题

  本节课开始,先投影显示图形及问题,让学生观察并发现结论。提出问题让学生思考,创设问题情境,激发学生学习的欲望和要求.

  (2)解决问题

  对所得到的结论通过教师启发,让学生完成证明.指导学生归纳总结,从而顺其自然得到本节课的一个定理及其两个推论. 多让学生亲自实践,参与探索发现,领略知识形成过程,这是课堂教学的基本思想和教学理念.

  (3)加深理解

  学生学习的过程是对知识的消化和理解的过程,通过例题的解决,提高和完善对定理及其推论理解。这一过程采用讲练结合、适时点拨的教学方法,把学生的注意力紧紧吸引在解决问题身上,让学生的思维活动在老师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”、“练”有所“获”,使传授知识与培养能力融为一体。一.教学目标

  1.掌握等腰三角形的性质定理的证明及这个定理的两个推论;

  2.会运用等腰三角形的性质证明线段相等;

  3.使学生掌握一般文字题的证明;

  4.通过文字题的证明,提高学生几何三种语言的互译能力;

  5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;

  6.渗透对称的数学思想,培养学生数学应用的观点;

  二.教学重点:等腰三角形的性质及其推论

  三.教学难点:文字题的证明

  四.教学用具:直尺,微机

  五.教学方法:问题探究法

  六.教学过程

   1、  性质定理的发现与证明

  (1)投影显示:

  一般学生都能发现等腰三角形的两个底角相等(若有其它发现也要给予肯定),

  (2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?

  师生讨论后,确定用全等三角形证明,学生亲自动手作出证明.证明略.

  教师指出:等腰三角形的性质定理提示了三角形边与角的转化关系,由两边相等转化为两角相等,这是今后证明两角相等常用的依据,其功效不亚于利用全等三角形证明两角相等.

  2、推论1的发现与证明

  投影显示:

  由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.

  启发学生自己归纳得出:顶角平分线、底边上的中线、底边上的高互相重合.

  学生口述证明过程.

  教师指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。

  3、推论2的发现与证明

  投影显示:

  一般学生都能发现等边三角形的三个内角都为 .然后启发学生与等腰三角形的“三线合一”作类比,自己得出等边三角形的“三线合一”.

  4、定理及其推论的应用

  

  解:(1) (2)另外两内角分别为: (3)

  小结:渗透分类思想,培养思维的严密性.

  例2、已知:如图,点D、E在△ABC的边BC上,AB=AC,AD=AE

  求证:BD=CE

  证明:作AF⊥BC,,垂足为F,则AF⊥DE

   ∵AB=AC,AD=AE(已知)

   AF⊥BC,AF⊥DE(辅助线作法)

   ∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)

   ∴BD=CE

  强调说明:等腰三角形中的“三线合一”常常作为解决等腰三角形问题的辅助线,添加辅助线时,有时作顶角的平分线,有时作底边中线,有时作底边的高,有时作哪条线都可以,有时却不能,还要根据实际情况来定.
  第 1 2 页  




Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:三角形的中位线

  • 下一篇文章:最简二次根式 教学设计示例4
  • 返回上一页】【打 印】【关闭窗口
    中查找“等腰三角形的性质”更多相关内容 5VAR论文频道
    中查找“等腰三角形的性质”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››数学教案-相似三角形的性质 (第2...
  • ››探索多边形内角和
  • ››数学教案-正方形 启发式教学示例
  • ››数学教案-三角形相似的判定 (第2...
  • ››数学教案-三角形的中位线
  • ››数学 - 初二数学利用公式法(完全平...
  • ››第三册一元二次方程的解法
  • ››数学教案-相似三角形的性质
  • ››一元二次方程根与系数关系
  • ››数学教案-线段的垂直平分线
  • ››等腰三角形定理
  • ››等腰三角形的判定
  • ››等腰三角形的性质
  • ››等腰三角形的性质 —— 初中数学...
  • ››等腰三角形 —— 初中数学第一册教...
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .