首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心教案在线数学七年级数学教案
   因式分解中转化思想的应用 —— 初中数学第一册教案      ★★★ 【字体: 】  
因式分解中转化思想的应用 —— 初中数学第一册教案
收集整理:佚名    来源:本站整理  时间:2010-06-16 00:19:06   点击数:[]    


因式分解是初中代数的重要内容,因其分解方法较多,题型变化较大,教学有一定难度。转化思想是数学的重要解题思想,对于灵活较大的题型进行因式分解,应用转化思想,有章可循,易于理解掌握,能收到较好的效果。

因式分解的基本方法是:提取公因式法、应用公式法、十字相乘法。对于结构比较简单的题型可直接应用它们来进行因式分解,学生能够容易掌握与应用。但对于分组分解法、折项、添项法就有些把握不住,应用转化就思想就能起到关键的作用。

分组分解法实质是一种手段,通过分组,每组采用三种基本方法进行因式分解,从而达到分组的目的,这就利用了转换思想。看下面几例:

例1、   4a2+2ab+2ac+bc

解:原式 =(4a2+2ab)+(2ac+bc)

       =2a(2a+b)+c(2a+b)

       =(2a+b)(2a+c)

分组后,每组提出公因式后,产生新的公因式能够继续分解因式,从而达到分解目的。

例2、   4a2-4a-b2-2b

解:原式=(4a2-b2)-(4a+2b)

  =(2a+b)(2a-b)-2(2a+b)

  =(2a+b)(2a-b-2)

按“二、二”分组,每组应用提公因式法,或用平方差公式,从而继续分解因式。

例3、   x2-y2+z2-2xz

解:原式=(x2-2xz+z2)-y2

       =(x-z2)-y2

       =(x+y-z)(x-y-z)

四项式按“三一”分组,使三项一组应用完全平方式,再应用平方差进行因式分解。

对于五项式一般可采用“三二”分组。三项这一组可采用提公因式法、完全平方式或十字相乘法,二项这一组可采用提公因式法或平方差公式分解,因此变化性较大。

例4、   x2-4xy+4y2-x+2y

解:原式=(x2-4xy+4y2)-(x-2y)

=(x-2y)2-(x-2y)

=(x-2y)(x-2y-1)

例5、   a2-b2+4a+2b+3

解:原式=(a2+4a+4)-(b2-2b+1)

=(a+2)2-(b-1)2

=(a+2+b-1)(a+2-b+1)

=(a+b+1)(a-b+3)

对于六项式可进行“二、二、二”分组,“三、三”分组,或“三、二、一”分组。

例6、   ax2-axy+bx2-bxy-cx2+cxy

①解:原式=(ax2-axy)+(bx2-bxy)-(cx2-cxy)

=ax(x-y)+bx(x-y)-cx(x-y)

=(x-y)(ax+bx-cx)

=x(x-y)(a+b-c)

②解:原式=(ax2+bx2-cx2)-(axy+bxy-cxy)

        =x2(a+b-c)-xy(a+b-c)

        =x(x-y)(a+b-c)

例7、   x2-2xy+y2+2x-2y+1

解:原式=(x2-2xy+y2)+(2x-2y)+1

=(x-y)2+2(x-y)+1

=(x-y+1)2

对于折项、添项法也可转化成这三种基本的方法来进行因式分解。

例8、   x4+4y4

解:原式=(x4+4x2y2+4y4)-4x2y2

=(x2+2y2)2-4x2y2

=(x2+2xy+2y2)(x2-2xy+2y2)

例9、   x4-23x2+1

解:原式=x4+2x2+1-25x2

      =(x2+1)2-25x2

      =(x2-5x+1)(x2+5x+1)

又如x3-7x-6可用折项、添项多种方法分解因式:

⑴x3-7x-6=(x3-x)-(6x+6)

⑵x3-7x-6=(x3-4x)-(3x+6)

⑶x3-7x-6=(x3+2x2+x)-(2x2+8x+6)

⑷x3-7x-6=(x3-6x2-7x)+(6x2-6)

只有掌握好三种基本的因式分解方法,才能应用转化思想处理灵活性较大、技巧性较强的题型。

本文有些内容超出大纲,但由于强调转化,既巩固知识,又开阔视野,对因式分解这一章会起到一定

因式分解是初中代数的重要内容,因其分解方法较多,题型变化较大,教学有一定难度。转化思想是数学的重要解题思想,对于灵活较大的题型进行因式分解,应用转化思想,有章可循,易于理解掌握,能收到较好的效果。

因式分解的基本方法是:提取公因式法、应用公式法、十字相乘法。对于结构比较简单的题型可直接应用它们来进行因式分解,学生能够容易掌握与应用。但对于分组分解法、折项、添项法就有些把握不住,应用转化就思想就能起到关键的作用。

分组分解法实质是一种手段,通过分组,每组采用三种基本方法进行因式分解,从而达到分组的目的,这就利用了转换思想。看下面几例:

例1、   4a2+2ab+2ac+bc

解:原式 =(4a2+2ab)+(2ac+bc)

       =2a(2a+b)+c(2a+b)

       =(2a+b)(2a+c)

分组后,每组提出公因式后,产生新的公因式能够继续分解因式,从而达到分解目的。

例2、   4a2-4a-b2-2b

解:原式=(4a2-b2)-(4a+2b)

  =(2a+b)(2a-b)-2(2a+b)

  =(2a+b)(2a-b-2)

按“二、二”分组,每组应用提公因式法,或用平方差公式,从而继续分解因式。

例3、   x2-y2+z2-2xz

解:原式=(x2-2xz+z2)-y2

       =(x-z2)-y2

       =(x+y-z)(x-y-z)

四项式按“三一”分组,使三项一组应用完全平方式,再应用平方差进行因式分解。

对于五项式一般可采用“三二”分组。三项这一组可采用提公因式法、完全平方式或十字相乘法,二项这一组可采用提公因式法或平方差公式分解,因此变化性较大。

例4、   x2-4xy+4y2-x+2y

解:原式=(x2-4xy+4y2)-(x-2y)

=(x-2y)2-(x-2y)

=(x-2y)(x-2y-1)

例5、   a2-b2+4a+2b+3

解:原式=(a2+4a+4)-(b2-2b+1)

=(a+2)2-(b-1)2

=(a+2+b-1)(a+2-b+1)

=(a+b+1)(a-b+3)

对于六项式可进行“二、二、二”分组,“三、三”分组,或“三、二、一”分组。

例6、   ax2-axy+bx2-bxy-cx2+cxy

①解:原式=(ax2-axy)+(bx2-bxy)-(cx2-cxy)

=ax(x-y)+bx(x-y)-cx(x-y)

=(x-y)(ax+bx-cx)

=x(x-y)(a+b-c)

②解:原式=(ax2+bx2-cx2)-(axy+bxy-cxy)

        =x2(a+b-c)-xy(a+b-c)

        =x(x-y)(a+b-c)

例7、   x2-2xy+y2+2x-2y+1

解:原式=(x2-2xy+y2)+(2x-2y)+1

=(x-y)2+2(x-y)+1

=(x-y+1)2

对于折项、添项法也可转化成这三种基本的方法来进行因式分解。

例8、   x4+4y4

解:原式=(x4+4x2y2+4y4)-4x2y2

=(x2+2y2)2-4x2y2

=(x2+2xy+2y2)(x2-2xy+2y2)

例9、   x4-23x2+1

解:原式=x4+2x2+1-25x2

      =(x2+1)2-25x2

      =(x2-5x+1)(x2+5x+1)

又如x3-7x-6可用折项、添项多种方法分解因式:

⑴x3-7x-6=(x3-x)-(6x+6)

⑵x3-7x-6=(x3-4x)-(3x+6)

⑶x3-7x-6=(x3+2x2+x)-(2x2+8x+6)

⑷x3-7x-6=(x3-6x2-7x)+(6x2-6)

只有掌握好三种基本的因式分解方法,才能应用转化思想处理灵活性较大、技巧性较强的题型。

本文有些内容超出大纲,但由于强调转化,既巩固知识,又开阔视野,对因式分解这一章会起到一定





Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:有理数的除法

  • 下一篇文章:数学教案-相反数
  • 返回上一页】【打 印】【关闭窗口
    中查找“因式分解中转化思想的应用 —— 初中数学第一册教案”更多相关内容 5VAR论文频道
    中查找“因式分解中转化思想的应用 —— 初中数学第一册教案”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››数学教案-余角和补角
  • ››新课程华师大版七年级下册第七章教...
  • ››你今年几岁了 —— 初中数学第一册...
  • ››三角形、梯形的中位线 教学设计-2
  • ››数学教案-第四章 一元一次方程 利...
  • ››正多边形的有关计算 教案
  • ››数学教案-有理数的乘法
  • ››数学教案-你今年几岁了
  • ››线段的比较和画法
  • ››数学教案-完全平方公式(教案)
  • ››因式分解的应用
  • ››因式分解中转化思想的应用 —— 初...
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .