首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心教案在线数学七年级数学教案
   同底数幂的乘法 —— 初中数学第二册教案      ★★★ 【字体: 】  
同底数幂的乘法 —— 初中数学第二册教案
收集整理:佚名    来源:本站整理  时间:2010-06-16 00:06:15   点击数:[]    


同底数幂的乘法()

教学目标

1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.

教学重点和难点

幂的运算性质.

课堂教学过程设计

一、运用实例 导入新课

引例  一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)

本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

二、复习提问

1.乘方的意义:求n个相同因数a的积的运算叫乘方,即

 

2.指出下列各式的底数与指数:

(1)34;  (2)a3;  (3)(a+b)2;  (4)(-2)3;  (5)-23

其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24

三、讲授新课

1.利用乘方的意义,提问学生,引出法则

计算103×102.

解:103×102=(10×10×10)+(10×10)(幂的意义)

=10×10×10×10×10(乘法的结合律)

=105.

2.引导学生建立幂的运算法则

将上题中的底数改为a,则有

a3·a2=(aaa)·(aa)

=aaaaa=a5,    即a3·a2=a5=a3+2

用字母m,n表示正整数,则有

=am+n,                  即am·an=am+n

3.引导学生剖析法则

(1)等号左边是什么运算?       (2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用举例 变式练习

例1  计算:

(1)107×104;  (2)x2·x5

:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7

提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

课堂练习

计算:

(1)105·106;           (2)a7·a3;              (3)y3· y2

(4)b5· b;                       (5)a6·a6;                           (6)x5·x5

例2          计算:

(1)23×24×25;(2)y· y2· y5

:(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8

对于第(2)小题,要指出y的指数是1,不能忽略.

五、小结

1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

2.解题时要注意a的指数是1.

六、作业

 

同底数幂的乘法()

教学目标

1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.

教学重点和难点

幂的运算性质.

课堂教学过程设计

一、运用实例 导入新课

引例  一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)

本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

二、复习提问

1.乘方的意义:求n个相同因数a的积的运算叫乘方,即

 

2.指出下列各式的底数与指数:

(1)34;  (2)a3;  (3)(a+b)2;  (4)(-2)3;  (5)-23

其中,(-2)3 与- 23 的含义是否相同?结果是否相等?(-2)4 与- 24

三、讲授新课

1.利用乘方的意义,提问学生,引出法则

计算103×102.

解:103×102=(10×10×10)+(10×10)(幂的意义)

=10×10×10×10×10(乘法的结合律)

=105.

2.引导学生建立幂的运算法则

将上题中的底数改为a,则有

a3·a2=(aaa)·(aa)

=aaaaa=a5,    即a3·a2=a5=a3+2

用字母m,n表示正整数,则有

=am+n,                  即am·an=am+n

3.引导学生剖析法则

(1)等号左边是什么运算?       (2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系? (4)公式中的底数a可以表示什么?

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用举例 变式练习

例1  计算:

(1)107×104;  (2)x2·x5

:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7

提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

课堂练习

计算:

(1)105·106;           (2)a7·a3;              (3)y3· y2

(4)b5· b;                       (5)a6·a6;                           (6)x5·x5

例2          计算:

(1)23×24×25;(2)y· y2· y5

:(1)23×24×25=23+4+5=212.(2) y· y2 · y5 =y1+2+5=y8

对于第(2)小题,要指出y的指数是1,不能忽略.

五、小结

1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

2.解题时要注意a的指数是1.

六、作业

 





Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:《位置的确定》教学案例

  • 下一篇文章:同类项
  • 返回上一页】【打 印】【关闭窗口
    中查找“同底数幂的乘法 —— 初中数学第二册教案”更多相关内容 5VAR论文频道
    中查找“同底数幂的乘法 —— 初中数学第二册教案”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››数学教案-余角和补角
  • ››新课程华师大版七年级下册第七章教...
  • ››你今年几岁了 —— 初中数学第一册...
  • ››三角形、梯形的中位线 教学设计-2
  • ››数学教案-第四章 一元一次方程 利...
  • ››正多边形的有关计算 教案
  • ››数学教案-有理数的乘法
  • ››数学教案-你今年几岁了
  • ››线段的比较和画法
  • ››数学教案-完全平方公式(教案)
  • ››同底数幂的乘法
  • ››同底数幂的乘法(二)
  • ››同底数幂的除法 第二课时
  • ››同底数幂的乘法 —— 初中数学第二...
  • ››同底数幂的除法
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .