首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心教育论文数学教育
   试谈解题思路的发现与范畴间的辩证关系      ★★★ 【字体: 】  
试谈解题思路的发现与范畴间的辩证关系
收集整理:佚名    来源:本站整理  时间:2009-01-10 12:50:15   点击数:[]    

[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持]众所周知,唯物辩证法的范畴是我们认识事物的科学的思维形式.唯物辩证法的每一对范畴都是对立的统一.它们一方面相互对立,另一方面又相互依存、相互贯通和相互转化.恩格斯指出,数学是辩证的辅助工具和表现形式.数学与唯物辩证法的这种天然联系,使得范畴间的辩证关系成为我们解决数学问题时发现解题思路的主要线索.本文试对解题思路的发现与范畴间辩证关系的联系作一初步探索,希望对教学有所帮助.

  一、对偶范畴间相互对立关系的启迪

  思维的定势与惯性,是影响解题思路的重要因素.根据问题的具体情况与个人的思维习惯,当我们从某一角度观察问题或从某一角度入手探索问题而陷于困境时,想到对偶范畴间的辩证关系,转而从原来思维的对立方面着手考察、分析,则往往寻找到柳暗花明的新境地.

  例1 设a>b>c.求证:a2b+b2c+c2a>ab2+bc2+ca2.

  分析与证明:由不等式两边的特征与联系想到运用比较法.证题的关键在于差式(a2b+b2c+c2a)-(ab2+bc2+ca2)的变形.

  变形1.差式=(a2b-ca2)+(b2c-ab2)+(c2a -bc2)

  =a2(b-c)+b2(c-a)+c2(a-b).

  至此,似乎无路可走.

  变形2.差式=(a2b-ab2)+(b2c-bc2)+(c2a -ca2)

  =ab(a-b)+bc(b-c)+ca(c-a).

   如此,仍然重蹈复辙.

  变形3.差式=(c2a-ab2)+(a2b-bc2)+(b2c-ca2)

  =a(c2-b2)+b(a2-c2)+c(b2-a2).

  如此,仍未走出“怪圈”.

  以上对差式“均匀分组”的尝试均未成功.在反思与寻觅中,受范畴间相互对立关系的启发,想到对差式作“不均匀分组”的变形.

  证法1.差式=a2b+(b2c+c2a)-(ab2+a2c)-bc2

  =b(a2-c2)+(b2+ac)(c-a)

  =(a-c)[b(a+c)-(b2+ac)]

  =(a-c)(a-b)(b-c)>0.

   ∴ 原不等式成立.

  探索初解为什么受阻,可以说过分“对称”组合是解题陷入困境的原因之一.在差式的对称结组中,不对称的条件a>b>c难以发挥作用.于是,再由范畴间的相互对立,想到差式的“不对称”结组.

  证法2.差式=(a2b-ab2)+(b2c-ca2)+(c2a-bc2)(有意避开对称结组)

   =ab(a-b)+c(b2-a2)+c2(a-b)

   =(a-b)[ab-c(a+b)+c2]

  =(a-b)(b-c)(a-c)>0.

  ∴ 原不等式成立.

  再寻初解受困的缘由,除了对称(均匀)结组的思维习惯,更重要的是自身思维的狭隘--局限于孤立考察各组的表面形式.于是对由范畴间的相互对立,想到寻觅各组之间的内在联系,诸多新解法由此产生.

  证法3.由上述变形1得

  差式=a2(b-c)+b2(c-a)+c2(a-b)

  =a2(b-c)-b2[(a-b)+(b-c)]+c2(a-b)(刻意沟通与前后两组的联系)

   =(b-c)(a2-b2)+(a-b)(c2-b2)

  =(a-b)[(b-c)(a+b)+(c2-b2)]
=(a-b)(b-c)(a-c)>0.

  ∴ 原不等式成立.

  其他证法从略.
 二、对偶范畴间相互依存关系的点拨

   在数学中,“加”与“减”,“直”与“曲”,特殊与一般,孤立与联系……这每一对范畴的双方相互依存,或明或暗地共处于同一问题的解题过程之中.因此,当我们从范畴的某一方入手问题未能(或取得)突破时,还应想到从范畴的另一方入手再行考察与求索.对范畴双方顾此失彼的思维上的偏颇,是解题陷入困境或出现疏漏的重要原因.

   例2 过抛物线y=x2的顶点O任作互相垂直的弦OA、OB,分别以OA、OB为直径作圆,并设两圆的另一交点为C,求C点的轨迹方程.

   分析与解答:循着求动直(曲)线交点轨迹方程的一般思路,设A(x1,x12),B(x2,x22),C(x,y),由OA⊥OB得

  x1x2=-1.①

  以OA为直径的圆的方程为

  x(x-x1)+y(y-x12)=0,即

  x2+y2-x1x-x12y=0.②

  同理,以OB为直径的圆的方程为

  x2+y2-x2x-x22y=0.③

  至此,欲消参数x1、x2,探索中容易想到两式相减.

  ②-③,得x1+x2=-x/y.④

  下一步如何动作?至此往往陷入困境.此时,循着辩证思维的途径,由加与减的相互依存,想到再考察②、③两式相加,则局面由此打开.

  解法1.②+③,得2(x2+y2)-(x1+x2)x-(x12+x22)y=0,

  2(x2+y2)-(x1+x2)x-[(x1+x2)2-2x1x2]·y=0.⑤

  将①、④代入⑤并整理,得

  x2+y2-y=0(y≠0).

  故C点

[1] [2] [3]  下一页


Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:如何使数学教学成为数学活动的教学

  • 下一篇文章:依靠科学管理 提高统计工作水平
  • 返回上一页】【打 印】【关闭窗口
    中查找“试谈解题思路的发现与范畴间的辩证关系”更多相关内容 5VAR论文频道
    中查找“试谈解题思路的发现与范畴间的辩证关系”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››试谈解题思路的发现与范畴间的辩证...
  • ››“能听懂课,不会解题”的原因调查...
  • ››小学数学活动课的开设原则与形式
  • ››关键是创设问题情境——引导学生自...
  • ››数学学习方法及其指导
  • ››数学与文学
  • ››小学数学竞赛活动与素质教育
  • ››如何使数学教学成为数学活动的教学...
  • ››“问题解决”和中学数学课程
  • ››波利亚的解题训练与“题海战术”的...
  • ››试谈解题思路的发现与范畴间的辩证...
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .