首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 电子通信 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
μPD3575DCCD图像传感器的原理及应用 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 22:15:22 点击数:[] ![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 关键词:μPD3575D CCD 驱动脉冲 图像传感器 1 概述 μPD3575D是NEC公司生产的一种高灵敏度、低暗电流、1024像元的内置采样保持电路和放大电路的线阵CCD图像传感器。该传感器可用于传真、 μPD3575D的主要特性如下: *像敏单元数目:1024像元; *像敏单元大小:14μm×14μm×14μm(相邻像元中心距为14μm); *光敏区域:采用高灵敏度和低暗电流PN结作为光敏单元; *时钟:二相(5V); *内部电路:采样保持电路,输出放大电路; *封装形式:20脚DIP封装。 2 内部原理和引脚功能 μPD3575D的封装形式为20脚DIP封装,其引脚排列如图1所示,引脚功能如表1所列。图2为μPD3575D的内部结构原理图,中间一排是由多个光敏二极管构成的光敏阵列,有效单元为1024位,它们的作用是接收照射到CCD硅片的光,并将之转化成电荷信号,光敏阵列的两侧为转移栅和模拟寄存器。在传输门时钟φTG的作用下,像元的光电信号分别转移到两侧的CCD转移栅。然后CCD的MOS电容中的电荷信号在φIO的作用下串行从输出端口输出。上述驱动脉冲由专门的驱动电路产生。
3 光电特性参数 μPD3575D的光学/电子特性参数如表2所列。表中的工作条件为:温度在25℃左右,工作电压VOD=VRD=VGC=12V,频率fSHO为0.5MHz,tint(积分时间)=10ms,光源为2856K的钨丝灯。
其中,饱和输出电压Vout为响应曲线失支直线形时的输出信号电压;饱和曝光量SE为输出饱和时的照度(lx)和积累时间的乘积。 输出电压不均匀性PRNU是取全部有效位输出电压的峰、谷之比值。平均暗电流ADS指的是遮光时的平均输出电流。暗信号不均匀性DSNU是遮光时的全部有效像元的输出电压最大或最小值与ADS的差。输出阻抗Zo为从外部看时输出端子的阻抗。响应度R是曝光量除以输出电压的值。值得注意的是:使用其它光源时,器件的响应度会有所变化。 CCD的驱动需要四路脉冲,分别为转移栅时钟φIO、复位时钟φRO、采样保持时钟φSHO和传输门时钟φTG,将它们分别输入到CCD芯片的2脚、3脚、4脚和8脚,并在相应的管脚接上相应的电压就可以实现对CCD的驱动。 实现对CCD驱动的关键工作是如何产生以上的四路波形。图3是该四路时序波形图。 从以上描述和对波形的分析可以看出,复位脉冲φRO每触发一次,φIO脉冲翻转一次,并转移一个像元的信号电荷,因此φIO脉冲的周期为φRO的2倍。采样保持时间φSHO的周期和φRO的周期相同,但相位有一定的时间延迟。传输门时钟φTG脉冲控制线阵CCD整行的转移时间间隔,可作为行同步脉冲,其低电平持续的时间为φIO的整数倍,倍数由CCD的像元数决定。图4给出了μPD3575D的脉冲时序关系图,该图中为负极性逻辑,与前边图3的正极性逻辑正好相反,在编程过程中,我们可以先实现正极性逻辑,然后通过反向器将极性反过来。 那么,如何控制循五泊开始和结束呢?传输门时钟φTG起的就是这一作用,当φTG由低电平变为高电平并经过一定的时延(最小值50ns)后,转移时钟φIO开始按周期翻转,每翻转一次,输出一个像元。所有像元输出完毕,φTG再由高电平变为低电平。图4中φTG只给出了开始部分的波形,后面表示积分时间的波形没有给出,因此后面的积分时间长短可以根据对积分时间的需要自行设定。但积分时间内的φIO数目也是有要求的。因为该CCD芯片的有效单元为1024,加上虚设单元、暗信号和空驱动等共有12613个光电二极管,由于该器件是两列并行分奇偶传输的,所以一个φTG周期至少要有630个φIO脉冲,即φTG>630φIO。 Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |