首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 教案在线 → 数学 → 八年级数学教案 |
|
|||||
数学教案-勾股定理 | |||||
收集整理:佚名 来源:本站整理 时间:2010-06-16 01:11:50 点击数:[] ![]() |
|||||
教学目标: 1、知识目标: (1)掌握勾股定理; (2)学会利用勾股定理进行计算、证明与作图; (3)了解有关勾股定理的历史. 2、能力目标: (1)在定理的证明中培养学生的拼图能力; (2)通过问题的解决,提高学生的运算能力 3、情感目标: (1)通过自主学习的发展体验获取数学知识的感受; (2)通过有关勾股定理的历史讲解,对学生进行德育教育. 教学重点:勾股定理及其应用 教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育 教学用具:直尺,微机 教学方法:以学生为主体的讨论探索法 教学过程: 1、新课背景知识复习 (1)三角形的三边关系 (2)问题:(投影显示) 直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗? 2、定理的获得 让学生用文字语言将上述问题表述出来. 勾股定理:直角三角形两直角边 的平方和等于斜边 的平方 强调说明: (1)勾――最短的边、股――较长的直角边、弦――斜边 (2)学生根据上述学习,提出自己的问题(待定) 学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论. 3、定理的证明方法 方法一:将四个全等的直角三角形拼成如图1所示的正方形.
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明 4、定理与逆定理的应用 例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长. 解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴ ∠2=∠C 又 ∴ ∴CD的长是2.4cm 例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点, 求证: 证法一:过点A作AE⊥BC于E 则在Rt△ADE中, 又∵AB=AC,∠BAC= ∴AE=BE=CE
即 证法二:过点D作DE⊥AB于E, DF⊥AC于F 则DE∥AC,DF∥AB 又∵AB=AC,∠BAC= ∴EB=ED,FD=FC=AE 在Rt△EBD和Rt△FDC中
在Rt△AED中, ∴ 求证: 证明:构造一个边长 的矩形ABCD,如图 在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF 即 例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为 AD+AB+BC=3,AB+BC+CD=3 图3中,在Rt△DGF中
同理 ∴图3中的路线长为 图4中,延长EF交BC于H,则FH⊥BC,BH=CH 由∠FBH= 及勾股定理得: EA=ED=FB=FC= ∴EF=1-2FH=1- ∴此图中总线路的长为4EA+EF= ∵3>2.828>2.732 ∴图4的连接线路最短,即图4的架设方案最省电线. 5、课堂小结: (1)勾股定理的内容 (2)勾股定理的作用 已知直角三角形的两边求第三边 已知直角三角形的一边,求另两边的关系 6、布置作业: a、书面作业P130#1、2、3 b、上交作业P132#1、3 板书设计:
探究活动 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响 (1)该城市是否会受到这交台风的影响?请说明理由 (2)若会受到台风影响,那么台风影响该城市持续时间有多少? (3)该城市受到台风影响的最大风力为几级? 解:(1)由点A作AD⊥BC于D, 则AD就为城市A距台风中心的最短距离 在Rt△ABD中,∠B= ,AB=220 ∴ 由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响. 故该城市会受到这次台风的影响. (2)由题意知,当A点距台风中心不超过60千米时, 将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时, 该城市都会受到这次台风的影响 由勾股定理得 ∴EF=2DE= 因为这次台风中心以15千米/时的速度移动 所以这次台风影响该城市的持续时间为 小时 (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级. Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
最新热点 | 最新推荐 | 相关新闻 | ||
|
|
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |