首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心教育论文数学教育
   “排列、组合”单元的教学体会——优化和发展学生教学认知结构的再认识      ★★★ 【字体: 】  
“排列、组合”单元的教学体会——优化和发展学生教学认知结构的再认识
收集整理:佚名    来源:本站整理  时间:2009-01-10 12:49:28   点击数:[]    

[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持]1.调整教材内容顺序,加强认知结构的层级性
  智慧技能的教学是学校教学的中心任务.著名认知心理学家加涅认为,智慧技能主要涉及概念和规则的掌握与运用,它由简单到复杂构成一个阶梯式的层级关系:概念(需要以辨别为先决条件)→规则(需要以概念为先决条件)→高级规则(需要以规则为先决条件).因此,对于中学数学的每个单元,学生应该按照加涅关于智慧技能由简单到复杂构成的这个层级关系去学习,以便按照这个层级关系把所学的知识组织到大脑当中,形成具有良好层级性的认知结构.
  据此,笔者在“排列、组合”单元的教学中,将教材内容的顺序进行了调整.调整后的结构如图1所示.排列、组合P概念从飞机票和飞机票价等具体问题的辨别入手,得出排列与组合的概念,进而介绍排列数概念、组合数概念及其符号表示.

 

概念

从飞机票和飞机票价等具体问题的辨别入手,得出排列与组合的要领进而介绍排列数概念、组合数概念及其符号表示.

专题一

算法

在解释P=n,C=n(n)的基础上,介绍加法原理和乘法原理(引例和例题的处理均须用由P或C组成的算式来解答).

专题二

排列数公式与计算

专题三

组合数公式、计算与性质

应用

用直译法解决纯排列与组合问题(同时用分步法解答纯排列问题).题型如1990年人教版高中《代数》下册(必修)(简称:高中《代数》下册.下同)第234页例3、第245页例2.

专题四

用分类法解决加法原理的简单应用题.题型如高中《代数》下册第234页例4(此例还可用分步法)、第245页例3

专题五

用分步法、分类法和排除法解综合性排列与组合问题.题型如高中《代数》下册第235页例5、第246页例4

专题六

 

1


  于是该单元的教学次序是:基本概念的形成(排列与组合的概念、排列数与组合数的概念)→基本算法规则的掌握(原理与公式)→概念和算法规则相结合的应用(这里是以解题规律为主线,把排列应用题和组合应用题一并按其解法由易到难分层次集中而对偶地解决的),完全符合加涅关于智慧技能的学习必须按从概念到规则,再到高级规则的层级顺序去进行的规律,理顺了学生学习排列、组合内容的认知层次,加强了该单元认知结构的层级性.
  2.运用先行组织者,促成认知结构的稳定性
  运用先行组织者以改进教材的组织与呈现方式,是提高教材可懂度,促进学生对教材知识的理解的重要技术之一.其目的是从外部影响学生的认知结构,促成认知结构的稳定性.
  因为高中生首次面对排列、组合单元的学习任务时,其认知结构中缺乏适当的上位观念用来同化它们,因此,我们在该单元的入门课里,在没有正式学习具体内容之前,先呈现如图2所示的组织者,能起到使学生获得一个用来同化排列、组合内容的认知框架的作用.

 





概念

排列、组合的概念

算法

算法原理、计算公式

应用

解排列、组合问题

 

2

  值得一提的是,安排在本文的入门课——专题一中的飞机票和飞机票价等具体问题,以及安排在基本原理课题中的两个引例,它们也分别起到了学习相应内容的具体模型组织者的作用.
  3.实行近距离对比,强化认知结构的可辨别性
  如果排列概念和组合概念在学生头脑中的分离程度低,加法原理和乘法原理在学生头脑中的可辨别性差,则会造成学生对排列和组合的判定不清,对加法原理和乘法原理的使用不准,从而严重影响学生解排列、组合问题的正确性.因此,在教学中我们必须增强它们在学生头脑中的可辨别性,以达到促使学生形成良好的“排列、组合”认知结构之目的.
  按调整后结构的顺序教学,很自然地实行了近距离对比,加大了排列与组合、加法原理和乘法原理的对比力度,从而强化了它们在学生头脑中的可辨别性.
  (1)在入门课里,开篇就将排列概念和组合概念进行近距离对比,有利于引导学生得到并掌握排列和组合的判定标准:看实际效果与元素的顺序有无关系.
  (2)专题二首次近距离比较加法原理和乘法原理,并运用其判定标准——是分类还是分步,去完成对实际问题的处理,以加强学生对它们的理解与辨别.
  (3)专题四、五、六里,把排列、组合问题按其解法分层次对偶地解决,在没有单独占用课时的情况下,很自然地为排列和组合的近距离比较,为加法原理和乘法原理的运用对比,提供了切实而尽可能多的机会.
  4.及时归纳总结,增强认知结构的整体性与概念性
  我们知道,认知结构是人们头脑中的知识结构,也就是知识在人们头脑中的系统组织,它具有整体性和概括性.认知心理学认为,认知结构的整体性越强、概括水平越高,就越有利于学习的保持与迁移.因此,在每个单元的教学中,我们必须随着该单元教学进度的推进,及时归纳总结已学内容的规律,以促进学生认知结构概括水平的不断提高,最终促使学生高效高质地整体掌握该单元,从而形成整体性强、概括程度高的认知结构.
  于是对于“排列、组合”单元,笔者就随着教学进度的深入,引导学生不断归纳、及时总结出以下各规律:
  (1)排列与组合的判定

[1] [2]  下一页


Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:“简易逻辑”教学中存在的问题——兼答《关于命题的困惑》一文中的“困惑”

  • 下一篇文章:“研究性学习”的教学研究
  • 返回上一页】【打 印】【关闭窗口
    中查找““排列、组合”单元的教学体会——优化和发展学生教学认知结构的再认识”更多相关内容 5VAR论文频道
    中查找““排列、组合”单元的教学体会——优化和发展学生教学认知结构的再认识”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››试谈解题思路的发现与范畴间的辩证...
  • ››“能听懂课,不会解题”的原因调查...
  • ››小学数学活动课的开设原则与形式
  • ››关键是创设问题情境——引导学生自...
  • ››数学学习方法及其指导
  • ››数学与文学
  • ››小学数学竞赛活动与素质教育
  • ››如何使数学教学成为数学活动的教学...
  • ››“问题解决”和中学数学课程
  • ››波利亚的解题训练与“题海战术”的...
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .