首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 理工论文 → 综合工程 |
|
||||||||||||||
深水承台单壁钢吊箱围堰设计 | ||||||||||||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 13:04:49 点击数:[] ![]() |
||||||||||||||
[本篇论文由上帝论文网为您收集整理,上帝论文网http://paper.5var.com将为您整理更多优秀的免费论文,谢谢您的支持] 摘要:介绍杭千高速公路第四合同富春江特大桥主桥深水承台单壁钢吊箱围堰的设计、结构。 关键词:深水承台 单壁钢吊箱 围堰 设计 1概况 杭州至千岛湖高速公路是浙江省公路水路交通建设规划(2003~2020)公路网主骨架“两纵两横十八连三绕三通道”之一连“杭新景高速公路”的组成部分,也是杭州市“交通西进”公路建设规划“一绕、三线、三连、四大接口”公路网主框架的“一线”。富春江特大桥是杭千高速公路杭州至桐庐段第四合同项目中的一座特大桥,位于富阳市东洲街道的张家村以南至灵桥镇北侧,全桥长1679.5m,全宽33.5m,分上下行两幅。其中主桥长367m,为68+2×120+68m预应力混凝土刚构-连续组合梁桥。主桥下部基础为群桩基础,高桩承台。主桥61#、62#、63#墩每个墩单幅桩基为9根Φ2.0m钻孔灌注桩,横桥向3排,每排3根,承台顶面设计标高为+4.00m,底面设计标高为0.00m,承台平面尺寸为14.20×14.20m。主桥墩位于富春江深水区,最深高程在-10.0m至-12.5m之间。经综合比较分析,主桥墩61#、62#、63#承台围堰采用单壁钢吊箱施工。 2.1 构造形式的选择 国内深水承台施工,多采用沉井、钢围堰或钢吊箱法。由于沉井和钢围堰施工工序繁锁,工期长,材料用量大,而钢吊箱工艺操作简单,节约工期,材料用量合理并能回收再利用,技术上可行。所以我们确定采用钢吊箱施工方案,并对吊箱侧板的单壁、双壁两种方案进行了比较(如表1所示),结合本工程工期、结构特点及施工经验等,本项目钢吊箱侧板采用单壁结构。
表1 2.2 设计条件 2.2.1工况条件 2.2.3结构设计条件 根据自然水位变化及钢吊箱施工作业时段,设计施工受力结构主要按照最高水位时,吊箱内抽干水后侧板所受水压力为设计依据,最低水位时,现浇承台砼侧压力进行校核,考虑最高水位时,钢吊箱抗浮措施。 2.3荷载取值依据 由《铁路桥涵设计规范》 (JTJ021-98)荷载组合V考虑钢吊箱围堰设计荷载组合。 水平荷载:∑Hj=静水压力+流水压力+风力+其他; 竖直荷载:∑Gj=吊箱自重+封底混凝土重+浮力+其他; 其中:单位面积上的静水压力按10kN/㎡计,水压随高度按线性分布; 风速很小,在此可忽略; 封底混凝土容重;γ=24.0kN/m3; 水的浮力:γ=10kN/m3; 封底混凝土与护筒之间的摩阻力取经验值150KN/m2 2.4计算 综合工况条件分析和计算内容,对钢吊箱各部分取最不利受力工况进行计算。 ① 底板主要承受封底混凝土重量和吊箱自重。荷载组合为混凝土自重+吊箱自重+浮力,此外,还要对吊箱入水时底板受力情况进行复算。吊箱吊挂系统与底板一起进行验算。 ② 侧板以承受水平荷载为主,最不利受力工况为抽水阶段,侧板计算包括竖肋、水平加劲肋、面板、竖肋拼接处及焊接的内力、 变形及应力计算。另外,还要对吊箱逐层入水及承台施工等阶段侧板受力情况进行复算。内支撑系统与侧板计算,在侧板验算的同时完成验算。 ③ 吊箱拼装下沉阶段主要与吊箱自重有关,以两层拼装完成下沉时为最不利进行计算控制,并据此计算结果设计吊点、吊带。 ⑥ 封底混凝土厚度计算。 5钢吊箱结构简介 ① 底板 ② 侧板 分块的原则主要是为了便于加工和运输,避免产生超标变形,所以分块较小。吊箱下层侧板与底板及上、下层侧板之间的水平缝和竖缝均采用螺栓连接,缝间设置10mm(压缩后为3~4 mm)泡沫橡胶垫以防漏水。侧板的面板为δ=8mm钢板,竖楞(接缝角钢除外)均为I25a工字钢,间距为660mm,水平加劲肋为 δ=8mm,h=250mm的钢板,间距为300mm、400mm、450mm和500mm。 侧板的作用:是与底板(包括封底混凝土)共同组成阻水结构,变承台及部分墩身水上施工为陆上施工,另一作用是兼做承台施工的外模板。 内支撑由内圈梁,水平斜撑杆二部分组成。总重为28.76吨。 内圈梁:内圈梁设二层,设在吊箱侧板的内侧,高程为4.50m和7.00m处,由下层4I40c和上层2I32c结构组成的水平四边形,焊在侧板内壁钢板上。内圈梁的作用主要是承受侧板传递的荷载,并将其传给水平斜撑杆。 水平斜撑杆:为菱形支撑结构,杆端与内圈梁焊接连接成一体,水平撑杆由2I32c组成。 ④ 吊箱吊挂系统: 吊挂系统由纵、横梁、吊杆及钢护筒组成,吊挂系统的作用是承担吊箱自重及封底混凝土的重量。 横梁:横梁(顺桥向)共计3排,均设在钢护筒顶,每排由两片贝雷梁组成。贝雷梁支点设专用支座(牛腿)焊接于护筒内侧的专用支座(牛腿)上,贝雷梁的作用是支承纵梁,并将纵梁传递的荷载(通过护筒)传递至基桩。 纵梁:纵梁(顺水方向)设置在贝雷梁上,共6排,由2I56工字钢(搭设工作平台用过的)组成。纵梁的作用是支承吊杆,并将吊杆荷载传递给横梁。 钢吊箱下沉入水后受流水压力的作用,吊箱围堰会向下游漂移,为便于调整吊箱位置,确保顺利下沉,在吊箱侧板内壁与钢护筒之间设上下两层导向系统,第一层设在距围堰底板2.00 m处,第二层设在距围堰底板6.00 m处,每层8个导向。定位系统由导向钢板、定位孔、定位器(短型钢)及调位千斤顶组成。导向板为厚度δ=16mm钢板,端部制成圆弧,分别焊于吊箱4个角部位的纵、横内圈梁上,导向板端部至钢护筒外壁之间留一定的空隙;定位孔是利用吊箱底板上靠上游的前排3个护筒孔洞作为定位孔,其位置必须和护筒-2.50m处位置保持一致;导向钢板及定位孔的作用是控制下沉吊箱的平面位置。调位时用调位千斤顶进行。定位是在吊箱下沉到位后,封底混凝土凝固前,为防止水流压力、波浪力及靠船力等动荷载对自由悬挂的钢吊箱发生挠动,影响封底混凝土质量而设置固定装置。定位主要利用钢护筒的稳定性将下沉到位的钢吊箱通过定位器与4个角的钢护筒连成整体达到钢吊箱的定位。根据设计施工水位,钢吊箱设计总高度为8.0m,共分两节,第一节高6.0m,第二节The URL has moved here Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
最新热点 | 最新推荐 | 相关新闻 | ||
|
|
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |