首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心理工论文物理学
   关于相对论与其解的时空分析      ★★★ 【字体: 】  
关于相对论与其解的时空分析
收集整理:佚名    来源:本站整理  时间:2009-01-10 12:53:40   点击数:[]    

为相对平直坐标系。在弯曲时
空取足够小的时空范围,可得到此类坐标系,这类似微分。在弯曲时空取足够小
的时空范围,该范围的时空近似平直。这与上面关于直接观测是观测不
到 项是一致的。在此坐标系内有统一的时空单位和统一的钟和尺。
所以,此坐标系有:
(28)
[v]是指此坐标系内任意点真空中光的速度, [t]是指此坐标系内任意点的
时间。
以后本文中的坐标系都是此类坐标系。称为相对平直坐标系。
不同的相对平直坐标系之间是"平行"的,须通过物理参数的变化,物质方
能从一个相对平直坐标系进入另一个相对平直坐标系。
(29)
(29)是时空对称理论,即时间量平方的变化量与空间量平方的变化量相等。所
用的坐标系是相对平直坐标系。其中 和 不是固有时,设这两个坐标系
固有时为 和 ,有:
(30)
所以,这里的时间量平方 与空间量平方 不能理解为:
可用时间单位或空间单位的平方代替,而应理解为类似密度的一种量,称为时
间量密度与空间量密度。时空对称理论是指时间量密度与空间量密度的对称变
化。
令时间量密度为 ,空间量密度为 ,
类比固有时平方的倒数 ,并可以替代;
类比固有长度平方 ,并可以替代;
( 分别为固有时和固有长度)
令时空密度为 ,不同的相对平直坐标系有不同的时空密度 ,任意相对平直坐标系中有
(31)
在同一个相对平直坐标系中, 类比线元 ,但是不可以替代。
不同的相对平直坐标系比较时空观测值时,须使用时间量密度和空间量密
度,通过设定某一相对平直坐标系时间量密度和空间量密度为1,得到不同的相
对平直坐标系的不同时间量密度和空间量密度。然后,对不同的相对平直坐标系
换算出不同的时间量和空间量单位。
这样时空对称理论实际上是关于时空密度的变化的理论,可表示为:
(32)
为不同的两个相对平直坐标系时空密度, 为时空密度的变化量。
七。时空密度的变化量
在狭义相对论中
(33)
在Schwarzschild解中
(c=1) (34)
引力 (35)
根据等效原理有惯性质量等于引力质量,或在局域时空内惯性力和引力不
可区分,在本文中局域时空为相对平直坐标系代替,那么在相对平直坐标系中
(36)
(37)
(38)
所以有:
(39)
在狭义相对论和Schwarzschild解中
(33)
那么,时空对称理论中,时空密度变化量 ,在 时,
(33)
这样 (37)
变为 (40)
此积分为不定积分。
这里 是能量的一种形式。用四维时空观点看, 是二阶逆变二阶
协变张量而不是狭义速度矢量的平方。
时空对称理论在 时表示为
(41)
为须观测的坐标系的时空密度; 为观测者所在的坐标系的时空密度,时间密度,空间密度; 是能量的一种形式。哪个坐标系绝对地得到能量,这个坐标系的时空密度绝对地改变。
八。时空对称理论和狭义相对论
假设两个相对平直坐标系,一个静止,一个角速度为 做圆周运动。
用时空对称理论分析
(42)
对于角速度为 的坐标系,离心力为 ( r 为圆周半径),
即 (43)
(44)
所以,时空密度的变化量 为
(45)
有 (46)
对于固有时 和固有长度 有
(47)
用狭义相对论分析固有时和固有长度有
(48)(是速度方向)
可以看出两理论对固有时有相同结论;对于固有长度,时空对称理论认为
固有长度全方向改变,狭义相对论认为只是平行瞬间速度 方向的固有长度
改变。
用时空对称理论和狭义相对论分析以速度 v做直线运动的坐标系也有相同
结论,只不过时空对称理论将以速度 v做直线运动的坐标系当做绕无穷远处某
点做圆周运动。
对于迈克耳逊-莫雷实验,狭义相对论是用惯性系中光速恒定来解释,时空
对称理论是用相对平直坐标系中光速不变来解释。
九。时空对称理论的详细表述
假设1:设有时空坐标系
(28)
(即光速恒定, 项观测不到 )
是指此坐标系内任意点光的速度, 指此坐标系内任意点的固有时。
此类坐标系称为相对平直坐标系。
假设2:任何观测者所观测到的真实时空坐标系都是相对平直坐标系。
不论是惯性系或非惯性系,只要坐标系足够小,都是此类坐标系。
相对平直坐标系之间比较时空量,使用时空密度
(31)
是时间密度 , 是空间密度。
在任一相对平直坐标系中,观测者处在相同的时空密度 中,就有相同
的时间密度 和 空间密度 ,因而有相同的固有时和固有长度。
的大小正比于固有时流逝的快慢。
的大小正比于固有长度的长短。
时空对称理论可表述为
(32)
为不同相对平直坐标系的时空密度。
当 ,有 (42)
(40)
用四维时空观点看是二阶逆变二阶协变张量。
时空对称理论认为 是能量的一种形式,而不是狭义的速度平方或加速
度,或二阶逆变二阶协变张量,上式的积分为不定积分。
当能量形式 绝对的改变,时空密度 绝对的改变。
十。时空对称理论对不同坐标系之间的观测比较
时空对称理论对不同坐标系之间的观测比较可简单的分为两种情况。其计
算结果是真实观测值。
1。两个相对平直坐标系 , 比较,有时空密度 ,
假设:
那么: (42)
为两坐标系时空密度的比较
坐标系 的固有时比坐标系 的固有时流逝快。
坐标系 的固有长度比坐标系 的固有长度长。
并通过 (40)
与经典的速度,引力和加速度对比,从而得到不同坐标系的固有时和固有
长度的区别。
2

上一页  [1] [2] [3]  下一页


Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:等效原理的对与错

  • 下一篇文章:惯性力学与整体科学体系
  • 返回上一页】【打 印】【关闭窗口
    中查找“关于相对论与其解的时空分析”更多相关内容 5VAR论文频道
    中查找“关于相对论与其解的时空分析”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››浅论分子蒸馏产品密度实时检测分析...
  • ››技术物体的空间性评析
  • ››论现代技术风险的内在生成
  • ››欧洲核子研究组织运行状况调查为例...
  • ››德谟克利特:原子的原理
  • ››引力神话的根源——解释惯性力学三...
  • ››物理学正论
  • ››物理学前沿问题探索
  • ››物理学理论研究
  • ››万有引力真的失灵了吗!
  • ››关于相对论与其解的时空分析
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .