首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心理工论文物理学
   The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity      ★★★ 【字体: 】  
The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity
收集整理:佚名    来源:本站整理  时间:2009-01-10 12:52:44   点击数:[]    

the principle of covariance (as will be shown necessarily be restricted to space-time coordinate systems which are compatible with the equivalence principle.) and 3) the field equation whose source can be modified. Note that eq. (10c) is invariant with respect to the Lorentz transformations. Moreover, eq. (10c) is compatible with the notion of weak gravity. Thus, eq. (10c) as an approximation for a specified coordinate system, is compatible with the requirement of covariance and compatibility with weak gravity. It remains to show that eq. (10c) is derivable from the equivalence principle.
The equivalence principle and the principle of general relativity imply that the geodesic equation (2) is the equation of motion for a neutral particle [2,3]. In comparison with Newton theory, Einstein [2] obtains the gravitational potential,

( " c2g00/2. (11)

Since ( satisfies the Poisson equation (( = 4(((, according to the correspondence principle, one has the field equation, (g00/2 = 4((c-2T00, where T00 "(, the mass density and ( is the coupling constant.
Then, according to special relativity and the Lorentz invariance, one has

(c( cgab = (c( c (ab = -4((c-2((T(m)ab + ((m)(ab(, (12a)
where
( + ( = 1, (m) = (cd T(m)cd , (12b)

T(m)ab is the tensor for massive matter, (ab is the Minkowski metric, and ( and ( are constants. Eq. (12) is a field equation for the first order approximation (as assumed) for weak gravity of moving particles. An implicit gauge condition is that the flat metric (ab is the asymptotic limit at infinity. To have the exact equation, since the left hand side of eq. (12a) does not satisfy the covariance principle, one must search for a tensor whose difference from (c( c (ab/2 is of second order in (c-2.
33. R. P. Feynman, The Feynman Lectures on Gravitation (Addison-Wesley, New York, 1995).
34. A Pais, Subtle is the Lord ... (Oxford University Press, New York, 1996), pp 255-261.
35. A. Einstein & N. Rosen, J. Franklin Inst. 223, 43 (1937).
36. J. E. Hogarth, articles, Fields, and Rigid Bodies in the Formulation of Relativity Theories", Ph. D. thesis 1953, Dept. of Math., Royal Holloway College, University of London (1953), p. 6.
37. H. Bondi, F. A. E. Pirani, & I. Robinson, Proc. R. Soc. London A 251, 519-533 (1959).
38. R. Penrose, Rev. Mod. Phys. 37 (1), 215-220 (1965).
39. V. A. Fock, The Theory of Space Time and Gravitation, trans. N. Kemmer (Pergamon Press, 1964), pp 6, 119, & 231.
40. S. W. Hawking & G. F. R. Ellis, The large Scale Structure of Space-Time (Cambridge: Cambridge Univ. Press, 1979).
41. V. F. Weisskopf, The Privilege of Being a Physicist (Freeman, San Francisco, 1988), p. 129.
42. O. Klein, Z. F. Physik 37, 895 (1926).
43. V. I. Denisov, & A. A. Logunov, in: Current Problems in Mathematics, Vol. 24: 3, 219 (Moscow: Vsesoyuz. Inst. Nauchn. Tekhn. Informatsii, 1982).
44. A. A. Vlasov, & V. I. Denisov, Teoret. Mat. Fiz. 53, 406 (1982).
45. H. Yilmaz, Nu. Cim. 107B, 941 (1992).
46. C. Y. Lo, Phys. Essays, 12 (3), 508-526 (September, 1999).
47. J. Weber and J. A. Wheeler, Revs. Modern Phys. 29 (3) 509 (1957).
48. I. Robinson and A. Trautman, Physical Review Letters 4 (8), 431 (April 1960).
49. A. Einstein, L. Infeld, and B. Hoffmann, Annals of Math. 39 (1), 65-100 (Jan. 1938).
50. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. R. Soc. Lond. A 269, 21 (1962).
51. L. Blanchet, & T. Damour, Phil. Trans. R. Soc. Lond. A 340, 379-430 (1986).
52. T. Damour in 300 Years of Gravitation, ed. S. W. Hawking & W. Israel (Cambridge: Cambridge Univ. Press, 1987), 128.
53. J. B. Griffiths, olliding Plane Waves in General Relativity" (Oxford Univ. Press, 1991).
54. F. E. Low, Dept. of Physics, M.I.T., Mass., private communications, 1997.
55. D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space (Princeton University Press, 1993).
56. C. Y. Lo, Phys. Essays, 13 (1) 109-120 (March, 2000).
57. Volker Perlick, Zentralbl. f. Math. (827) (1996) 323, entry Nr. 53055.
58. Volker Perlick (republished with an editorial note), Gen. Relat. Grav. 32 (2000).
6



上一页  [3] [4] [5] [6] [7] [8] 


Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:邵雍:从物理之学到性命之学

  • 下一篇文章:论 惯 性
  • 返回上一页】【打 印】【关闭窗口
    中查找“The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity”更多相关内容 5VAR论文频道
    中查找“The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››浅论分子蒸馏产品密度实时检测分析...
  • ››技术物体的空间性评析
  • ››论现代技术风险的内在生成
  • ››欧洲核子研究组织运行状况调查为例...
  • ››德谟克利特:原子的原理
  • ››引力神话的根源——解释惯性力学三...
  • ››物理学正论
  • ››物理学前沿问题探索
  • ››物理学理论研究
  • ››万有引力真的失灵了吗!
  • ››The worlds population初中英语教案...
  • ››The new students初中英语教案
  • ››The Palace Museum(第五册)-教学...
  • ››The trick-教学教案
  • ››The merchant of Venice-教学教案...
  • ››The USA-教学教案
  • ››The trick
  • ››The summer holidays-教学教案
  • ››The summer holidays
  • ››The worlds population-教学教案
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .