l cell vehicles in China and a case of application in Beijing [J], International Journal of Hydrogen Energy 2004, article in press. [7] Rosa V.M, Santos M.B.F, Silva E.P.D, New materials for water electrolysis diaphragms [J], International Journal of Hydrogen Energy 1995, 20(9): 697-700. [8] Vermeiren P, Adriansens W, Moreels J.P, Leysen R. Evaluation of the zirfon separator for use in alkaline water electrolysis and Ni-H2 batteries [J], International Journal of Hydrogen Energy 1998, 23(5): 321-324. [9] Hu W.K, Cao X.J, Wang F.P, Zhang Y.S. Short Communication: a novel cathode for alkaline water electrolysis [J], International Journal of Hydrogen Energy 1997,22: 441-443. [10] Schiller G, Henne R, Mohr P, Peinecke V. High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer [J], International Journal of Hydrogen Energy 1998,23: 761-765. [11] Hijikata T. Research and development of international clean energy network using hydrogen energy (WE-NET) [J], International Journal of Hydrogen Energy2002, 27(2): 115-129. [12] Kumar G.S, Raja M, Parthasarathy S. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells [J], Electrochimica Acta 1995, 40(3): 285-290. [13] Hirano S, Kim J, Srinivasan S. High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes [J], Electrochimica Acta 1997, 42(10): 1587-1593. [14] Hayre R, Lee S.J, Cha S.W, Prinz F.B. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading [J], Journal of Power Sources 2002, 109(2): 483-493. [15] Guo Q.H, Pintauro P.N, Tang H, Connor S. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J], Journal of Membrane Science 1999, 154(2): 175-181. [16] Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene) synthesis, proton conduction and methanol permeation [J], Journal of Membrane Science 2000, 166(2):189-197. [17] Ghany N.A.A, Kumagai N, Meguro S, Asami K, Hashimoto K, Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis [J], Electrochimica Acta 2002, 48(1): 21-28. [18] Green MA, Recent developments in photovoltaics [J], Solar Energy 2004, 76(1): 3-8. [19] Ackermann T, Soder L, An overview of wind energy-status 2002 [J], Renewable and Sustainable Energy Reviews 2002, 6(1): 67-128. [20] Padro C.E.G, Putsche V. Survey of the economics of hydrogen technologies [Z], NREL/TP-570-27079, September 1999, National Renewable Energy Laboratory, U.S.A. [21] Kogan A, Direct solar thermal splitting of water and on site separation of the products 1: theoretical evaluation of hydrogen yield [J], International Journal of Hydrogen Energy 1997, 22(5): 481-486. [22] Kogan A, Direct solar thermal splitting of water and on-site separation of the products-II: Experimental feasibility study [J], International Journal of Hydrogen Energy 1998, 23(2): 89-98. [23] Baykara S.Z, Experimental solar water thermolysis [J], International Journal of Hydrogen Energy, 2004, article in press. [24] Harvey, S., Davidson, J.H., Fletcher, E.A, Thermolysis of hydrogen sulfide in the temperature range 1350 to 1600K [J], Ind. Eng. Chem. Res 1998, 37: 2323-2332. [25] Steinfeld A, Spiewak I, Economic evaluation of the solar thermal co-production of Zinc and synthesis gas [J], Energy Conversion and Management 1998, 39(15): 1513-1518. [26] Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J. Solar-processed metals as clean energy carriers and water-splitters [J], International Journal of Hydrogen Energy 1998, 23(9): 767-774. [27] Haueter P, Moeller S, Palumbo R, Steinfeld A, The production of Zinc by thermal dissociation of Zinc oxide-solar chemical reactor design [J], 上一页 [4] [5] [6] [7] [8] [9] [10] [11] 下一页
Tags:
|