首 页       用户登录  |  用户注册
设为首页
加入收藏
联系我们
按字母检索 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
按声母检索 A B C D E F G H J K L M N O P Q R S T W X Y Z 数字 符号
您的位置: 5VAR论文频道论文中心教育论文数学教育
   浅论数学直觉思维及培养      ★★★ 【字体: 】  
浅论数学直觉思维及培养
收集整理:佚名    来源:本站整理  时间:2009-01-10 12:50:00   点击数:[]    

专意于细节的推敲,是思维的大手笔。正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。
  
  伊恩.斯图加特说:"直觉是真正的数学家赖以生存的东西",许多重大的发现都是基于直觉。欧几里得几何学的五个公设都是基于直觉,从而建立起欧几里得几何学这栋辉煌的大厦;哈密顿在散步的路上进发了构造四元素的火花;阿基米德在浴室里找到了辨别王冠真假的方法;凯库勒发现苯分了环状结构更是一个直觉思维的成功典范。
  
  (3)自信力
  
  学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。不可否认情感的重要作用,但笔者的观点是,兴趣更多来自数学本身。成功可以培养一个人的自信,直觉发现伴随着很强的"自信心"。相比其它的物资奖励和情感激励,这种自信更稳定、更持久。当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。
  
  高斯在小学时就能解决问题"1+2+ …… +99+100=?",这是基于他对数的敏感性的超常把握,这对他一生的成功产生了不可磨灭的影响。而现在的中学生极少具有直觉意识,对有限的直觉也半信半疑,不能从整体上驾驭问题,也就无法形成自信。
  
 三、直觉思维的培养
  
  一个人的数学思维,判断能力的高低主要取决于直觉思维能力的高低。徐利治教授指出:"数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的。"数学直觉是可以通过训练提高的。
  
  (!)扎实的基础是产生直觉的源泉
  
  直觉不是靠"机遇",直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。若没有深厚的功底,是不会进发出思维的火花的。阿提雅说:"一旦你真正感到弄懂一样东西,而且你通过大量例子以及通过与其它东两的联系取得了处理那个问题的足够多的经验.对此你就会产生一种关于正在发展的过程是怎么回事以及什么结论应该是正确的直觉。"阿达玛曾风趣的说:"难道一只猴了也能应机遇而打印成整部美国宪法吗?"
  
  (2)渗透数学的哲学观点及审美观念
  
  直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建邻的把握事物的本质。这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。例如(a+b)2= a2+2ab-b2 ,即使没有学过完全平方公式,也可以运用对称的观点判断结论的真伪。
  
  美感和美的意识是数学直觉的本质,提高审美能力有利于培养数学事物间所有存在着的和谐关系及秩序的直觉意识,审美能力越强,则数学直觉能力也越强。狄拉克于1931年从数学对称的角度考虑,大胆的提出了反物质的假说,他认为真空中的反电子就是正电子。他还对麦克斯韦方程组提出质疑,他曾经说,如果一个物理方程在数学上看上去不美,那么这个方程的正确性是可疑的。
  
  (3)重视解题教学
  
  教学中选择适当的题目类型,有利于培养,考察学生的直觉思维。
  
  例如选择题,由于只要求从四个选择支中挑选出来,省略解题过程,容许合理的猜想,有利于直觉思维的发展。实施开放性问题教学,也是培养直觉思维的有效方法。开放性问题的条件或结论不够明确,可以从多个角度由果寻因,由因索果,提出猜想,由于答案的发散性,有利于直觉思维能力的培养。
  
  (4)设置直觉思维的意境和动机诱导
  
  这就要求教师转变教学观念,把主动权还给学生。对于学生的大胆设想给予充分肯定,对其合理成分及时给予鼓励,爱护、扶植学生的自发性直觉思维,以免挫伤学生直觉思维的积极性和学生直觉思维的悟性。教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感。
  
  "跟着感觉走"是教师经常讲的一句话,其实这句话里已蕴涵着直觉思维的萌芽,只不过没有把它上升为一种思维观念。教师应该把直觉思维冠冕堂皇的在课堂教学中明确的提出,制定相应的活动策略,从整体上分析问题的特征;重视数学思维方法的教学,诸如:换元、数形结合、归纳猜想、反证法等,对渗透直觉观念与思维能力的发展大有稗益。
  
  四、结束语
  
  直觉思维与逻辑思维同等重要,偏离任何一方都会制约一个人思维能力的发展,伊思.斯图尔特曾经说过这样一句话,"数学的全部力量就在于直觉和严格性巧妙的结合在一起,受控制的精神和富有灵感的逻辑。"受控制的精神和富有美感的逻辑正是数学的魅力所在,也是数学教育者努力的方向。
  

上一页  [1] [2] 


Tags:


文章转载请注明来源于:5VAR论文频道 http://paper.5var.com。本站内容整理自互联网,如有问题或合作请Email至:support@5var.com
或联系QQ37750965
提供人:佚名
  • 上一篇文章:数学学习与数学课程改革

  • 下一篇文章:数学学习方法及其指导
  • 返回上一页】【打 印】【关闭窗口
    中查找“浅论数学直觉思维及培养”更多相关内容 5VAR论文频道
    中查找“浅论数学直觉思维及培养”更多相关内容 5VAR论文频道
    最新热点 最新推荐 相关新闻
  • ››试谈解题思路的发现与范畴间的辩证...
  • ››“能听懂课,不会解题”的原因调查...
  • ››小学数学活动课的开设原则与形式
  • ››关键是创设问题情境——引导学生自...
  • ››数学学习方法及其指导
  • ››数学与文学
  • ››小学数学竞赛活动与素质教育
  • ››如何使数学教学成为数学活动的教学...
  • ››“问题解决”和中学数学课程
  • ››波利亚的解题训练与“题海战术”的...
  • ››浅论数学教学应唤起学生主体意识
  • ››浅论数学直觉思维及培养
  •   文章-网友评论:(评论内容只代表网友观点,与本站立场无关!)
    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 网站地图
    Copyright © 2006-2033 5Var.Com. All Rights Reserved .