量有机垃圾, 也可以通过气化或热 解制氢. 这些技术在香港的成功应用还需要更深入的研究, 本文不作深入探讨. 6. 小结 本文综述了目前利用可再生资源制氢的主要技术, 介绍了其基本原理, 也涉及到 了各项技术的经济性和环境以及安全方面的问题. 对各项制氢技术进行了对比分析, 总结出利用风能发电再推动电解水, 以及利用生物质的热化学制氢具有良好的经济性, 对环境的污染较小, 技术成熟, 可以作为大规模制氢的选择. 利用光伏-电解水技术具 有诱人的发展前景, 但目前还未显示出其经济性. 而太阳能热化学制氢则处于研究阶 段, 还难以用于大规模制氢. 香港具有比较丰富的可再生资源, 利用风力发电和有机 废物制氢是可行的制氢技术, 而光伏电池还需要大量研究以进一步降低成本. 尽管还 有大量的研究和更深入的分析要做, 利用可再生资源制氢以同时解决污染和能源问题 已经为我们展开了一个良好的前景. 致谢: 本文属<可再生氢能在香港的应用研究>项目, 该课题受香港中华电力公司(CLP)及香港 特别行政区政府资助, 在此表示感谢! 参考文献: [1] Kazim A, Veziroglu TN. Utilization of Solar-Hydrogen Energy in the UAE to Maintain its Share in the World Energy Market for the 21st Century [J]. Renewable Energy 2001, 24(2): 259-274. [2] Abdallah MAH, Asfour SS, Veziroglu TN. Solar-Hydrogen Energy System for Egypt [J], International Journal of Hydrogen Energy 1999, 24(6): 505-517. [3] Mao.ZQ. Hydrogen---a Future Clean Energy in China [A], Symposium on Hydrogen Infrastructure Technology for Energy & Fuel Applications, November 18, 2003. The Hong Kong Polytechnic University, Hong Kong, 27-33. [4] Steinfeld A, Palumbo R. Solar thermochemical process technology [J], Encyclopedia of Physical Science & Technology 2001, 15: 237-256. [5] Middleton P, Larson R, Nicklas M, Collins B. Renewable Hydrogen Forum: A summary of expert opinions and policy recommendations [Z], National Press Club, Washington DC, October 1, 2003. [6] Wen Feng, Shujuan Wang, Weidou Ni, Changhe Chen, The future of hydrogen infrastructure for fuel cell vehicles in China and a case of application in Beijing [J], International Journal of Hydrogen Energy 2004, article in press. [7] Rosa V.M, Santos M.B.F, Silva E.P.D, New materials for water electrolysis diaphragms [J], International Journal of Hydrogen Energy 1995, 20(9): 697-700. [8] Vermeiren P, Adriansens W, Moreels J.P, Leysen R. Evaluation of the zirfon separator for use in alkaline water electrolysis and Ni-H2 batteries [J], International Journal of Hydrogen Energy 1998, 23(5): 321-324. [9] Hu W.K, Cao X.J, Wang F.P, Zhang Y.S. Short Communication: a novel cathode for alkaline water electrolysis [J], International Journal of Hydrogen Energy 1997,22: 441-443. [10] Schiller G, Henne R, Mohr P, Peinecke V. High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer [J], International Journal of Hydrogen Energy 1998,23: 761-765. [11] Hijikata T. Research and development of international clean energy network using hydrogen energy (WE-NET) [J], International Journal of Hydrogen Energy2002, 27(2): 115-129. [12] Kumar G.S, Raja M, Parthasarathy S. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells [J], Electrochimica Acta 1995, 40(3): 285-290. [13] Hirano S, Kim J, Srinivasan S. High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes [J], Electrochimica Acta 1997, 42(10): 1587-1593. [14] Hayre R, Lee S.J, Cha S.W, Prinz F.B. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading [J], Journal of Power Sources 2002, 109(2): 483-493. [15] Guo Q.H, Pintauro P.N, Tang H, Connor S. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J], Journal of Membrane Science 1999, 154(2): 175-181. [16] Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene) synthesis, proton conduction and methanol permeation [J], Journal of Membrane Science 2000, 166(2):189-197. [17] Ghany N.A.A, Kumagai N, Meguro S, Asami K, Hashimoto K, Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis [J], Electrochimica Acta 2002, 48(1): 21-2 上一页 [3] [4] [5] [6] [7] [8] [9] 下一页
Tags:
|