首 页 用户登录 | ![]() |
|||
|
|||
按字母检索 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
按声母检索 | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z | 数字 | 符号 |
|
![]() |
您的位置: 5VAR论文频道 → 论文中心 → 计算机论文 → 计算机应用 |
|
|||||
基于联结主义的连续记分IRT模型的项目参数和被试能力估计 | |||||
收集整理:佚名 来源:本站整理 时间:2009-01-10 11:49:15 点击数:[] ![]() |
|||||
第三组项目和第三矩阵将在下面作解释。
(4)步骤4:建立项目参数训练模式 当估计项目参数时,将“第一矩阵”中的每一列作为一个模式的输入,因为每一列都代表所有被试对一个项目的反应情况,于是可以将与各列相应项目的a、b或c作为输出,组成项目参数训练模式,用该模式对一组神经网络(共30个,称为第二组神经网络)进行训练。 (5)步骤5:建立项目参数测试模式并进行测试 用蒙特卡罗方法产生15个项目(称为第三组项目)的参数a、b、c,并用原先已经产生的第一组被试的θ值对它们起反应,产生反应矩阵(称为“第三矩阵”)。然后,将“第三矩阵”中的每一列作为模式的输入,相应的15个项目的参数a、b或c作为输出,组成测试模式。用经过训练的第二组神经网络对其进行测试,也就是由神经网络对第三组项目进行参数估计,然后将估计值和真实值进行比较,记录下测试误差,如表1的2、3、4列所示。和对θ估计的测试误差一样,它是所有测试模式的误差之和。这里共有15个测试模式(即上述的第三组项目)。因此要把表1中的的2、3、4列数字除以15,再求平均数M和标准差SD,得到结果在表2中。 表2 单个模式测试误差的平均数和标准差 统计项 θ a b c M 0.0027 0.1379 0.1586 0.0045 SD 0.0009 0.0174 0.0227 0.0015 上一页 [1] [2] [3] [4] [5] [6] 下一页 Tags: |
提供人:佚名 | |
【返回上一页】【打 印】【关闭窗口】 |
![]() |
5VAR论文频道 |
![]() |
5VAR论文频道 |
![]() |
关于本站 -
网站帮助 -
广告合作 -
下载声明 -
网站地图
Copyright © 2006-2033 5Var.Com. All Rights Reserved . |